Experimental and Computational Study on Effect of Vanes on Heat Transfer and Flow Structure of Swirling Impinging Jet

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, India

2 Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta - 31527, Egypt

3 Faculty of Engineering, Delta University for Science and Technology, Gamasa - 35712, Egypt

Abstract

The study focuses on heat transfer performance and flow structure associated with swirling jet on a flat target surface. The analysis is carried out with helicoid inserts of swirl number S = 1.3 by varying the number of vanes with Reynolds number between 11200 and 35600. The comparison of swirling jet with circular jet is carried out on its heat transfer performance. The heat transfer and flow structure are visualized using thermo-chromic liquid crystal sheet and oil film technique respectively. The numerical simulation is also performed at Re = 24700 for H/D distance between 1 and 4 using computational fluid dynamics. The heat transfer results reveal that the presence of axial recirculation zone at Re = 29800 and 35600 for the triple helicoid affects the uniformity of heat transfer distribution at 0 < X/D < 1.5 at H/D = 3. The axial component of velocity with respect to swirling jet is less than zero in the stagnation area and it increases at 0.57 < r/D < 0.97 for single vane and 0.63 < r/D < 0.97 for double and triple vanes. While the steep increase in tangential velocity of the triple vane jet is apparent at 0 < r/D < 0.5 at H/D = 2 and 3, the maximum value of point radially shifts inward towards the jet. The location of maximum turbulent kinetic energy approaching the surface at about r/D = 0.9 - 1.2 which characterizes the swirling jet at H/D = 2.

Keywords


Ahlers, G., D. S. Cannell, L. I. Berge and S. Sakurai (1994). Thermal conductivity of the nematic liquid crystal 4-n-pentyl-4’-cyanobiphenyl. Physical review E 49, 545-553.##
Alekseenko, S. V. and A. V. Bilsky (2007).  Experimental study of an impinging jet with different swirl rates. International Journal of Heat and Fluid Flow 28 (6), 1340-1359.##
Bentarzi, F., A. Mataoui and M. Rebay (2019).  Effect of Inclination of Twin Jets Impinging a Heated Wall, Journal of Applied Fluid Mechanics 12 (2), 403-411.##
Cafiero, G., S. Discetti and T. Astarita (2014). Heat transfer enhancement of impinging jets with fractal generated turbulence. International Journal of Heat and Mass Transfer, 75: 173-183.##
Chandramohan, P., S. N. Murugesan and S. Arivazhagan (2017). Heat Transfer Analysis of Flat Plate Subjected to Multi- Jet Air Impingement using Principal Component Analysis and Computational Technique. Journal of Applied Fluid Mechanics 10 (1), 293-306.##
Chung, Y. M and K. H. Luo (2002). Unsteady Heat Transfer Analysis of an Impinging Jet. Journal of Heat Transfer 124(6), 1039-1048.##
Eiamsa-ard S., K. Nanan and K. Wongcharee (2015). Heat transfer visualization of co/counter-dual swirling impinging jets by thermo chromic liquid crystal method. International Journal of Heat and Mass Transfer 86, 600- 621.##
Fenot, M, E. Dorignac and G. Lalizel (2015). Heat transfer and flow structure of a multichannel impinging jet. International Journal of Thermal Sciences 90, 323-338.##
Fleischer, A. S., K. Kramer and R. J. Goldstein (2001). Dynamics of the vortex structure of a jet impinging on a convex surface. Experimental Thermal Fluid Science 24, 169-175.##
Geers, L. F. G., M. J. Tummers, T. J. Bueninck and K. Hanjalic (2008). Heat transfer correlation for hexagonal and in-line arrays of impinging jets. International Journal of Heat and Mass Transfer 51(21), 5389-5399.##
Gioacchino C., S. Discetti and T. Astarita (2014). Heat transfer enhancement of impinging jets with fractal-generated turbulence, International Journal of Heat and Mass Transfer 75, 173–183.##
Goldstein, R. J., and J. F. Timmers (1982). Visualization of heat transfer from arrays of impinging jets. International Journal of heat and Mass Transfer 25(12), 1857-1868.##
Gupta, A. K., D. G. Lilley and N. Syred (1984). Swirl Flows. Abacus Press, Massachusetts, USA.##
Holman, J. P. (2002). Heat Transfer. Eight SI metric edition, Tata McGraw- Hill, India.##
Huang, L. and M. S. El-Genk (1998). Heat transfer and flow visualization experiments of swirling, multi-channel and conventional impinging jets. International Journal of Heat and Mass Transfer 41 (3), 583-600.##
Huang, Y. and V. Yang (2005). Effect of swirl on combustion dynamics in a lean- premixed swirl-stabilized combustor. Proceedings of the Combustion Institute 30, 1775 -1782.##
Ianiro, A. and G. Cardone (2012). Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering 49, 89-98.##
Ichimiya, K. and K. Tsukamoto (2010). Heat Transfer characteristics of a swirling laminar impinging jet. Journal of Heat Transfer 132 (1), 1-5.##
Illyas, S. M., B. R. Ramesh Bapu and V. V Subba Rao (2019). Experimental Analysis of Heat Transfer and Multi Objective Optimization of Swirling Jet Impingement on a Flat Surface.  Journal of Applied Fluid Mechanics 12 (3), 803-817.##
Kinsella, C., B. Donnelly, T. S. O’Donovan and D. B. Murray (2008). Heat transfer enhancement from a horizontal surface by impinging swirl jets. Fifth European Thermal Sciences Conference. Netherland, UK.##
Liu, Z., J. Li and Z. Feng (2015). Numerical study of swirl cooling in a turbine blade leading edge model. Journal of Thermo Physics and Heat Transfer 29 (1), 66-178.##
Lytle, D. and B. W. Webb (1994). Air jet impingement heat transfer at low nozzle-plate spacing. International Journal of Heat and Mass Transfer 37 (12), 1687-1697.##
Mahmood, M. (1980). Heat transfer from swirling impinging jets. Ph.D thesis, Cranfield Institute of Technology, Cranfield, UK.##
Park, S. H. and H. D. Shin (1993). Measurements of entrainment characteristics of swirling jets. International Journal of Heat and Mass Transfer 36 (16), 4009 - 4018.##
Qiu, D., L. Luo, S. Wang, B. Sunden and X. Zhang (2019). Analysis of heat transfer and fluid flow of a slot jet impinging on a confined concave surface with various curvature and small jet to target spacing. Heat Transfer and Fluid Flow 29, 2885-2910##
Senda, M., K. Inaoka, D. Toyoda and S. Sato (2005). Heat Transfer and Fluid Flow Characteristics in a Swirling Impinging Jet. Heat Transfer Asian Research 34 (5), 324 - 335.##
Sheen, H. J., W. J. Chen, S. Y. Jeng and T. L. Huang (1996). Correlation of Swirl Number for a Radial-Type Swirl Generator. Experimental Thermal and Fluid Science 12, 444 - 451.##
Shukla, A. K. and A. Dewan (2017). Convective heat transfer enhancement using slot jet impingement on a detached rib surface Journal of Applied Fluid Mechanics, 10 (6), 1615-1627##
Tang, Z. G., F. Deng, S. C. Wang and J. P. Cheng (2021). Numerical simulation of flow and heat transfer characteristics of a liquid jet impinging on a cylindrical cavity heat sink. Journal of Applied Fluid Mechanics 14, 723 – 732.##
Tangirala, V., R. H. Chen and J. F. Driscoll (1987). Effect of Heat Release and Swirl on the Recirculation within Swirl- Stabilized Flames. Combustion Science and Technology 51, 75 - 95.##
Tannehill, J. C., D. Anderson and R. H. Pletcher (1997). Computational Fluid Mechanics and Heat Transfer. Second Edition, Taylor and Francis.##
Versteeg, H. K. and W Malalasekara (1995). An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Longman Scientific and Technical Publishers, England##
Wannassi, M. and F. Monnoyer (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays, Applied Thermal Engineering 78, 62 -73##
Yang, H. Q., T. Kim, T. J. Lu and K. Ichimiya (2010). Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling. International Journal of Heat and Mass Transfer 53(19), 4092-4100.##
Yazdabadi, P. A., A. J. Griffiths and N. Syred (1994). Characterization of the PVC phenomena in the exhaust of a cyclone dust separator. Experiments in Fluids 17, 84 - 95.##
Zuckerman, N. and N. Lior (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Advances in Heat Transfer 39, 565-631##