Andrews, G. E. and F. Bazdidi-Tehrani, C. I. Hussain and J. P. Pearson (1989). Small diameter film cooling hole heat transfer: The influence of the number of holes. ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition, Toronto, Ontario, Canada.##
Boyce, M. P. (2011). Gas Turbine Engineering Handbook. Butterworth-Heinemann, Oxford, UK.##
Bryant, C. E., C. J. Wiese, J. L. Rutledge and M. D. Polanka (2019). Experimental evaluations of the relative contributions to overall effectiveness in turbine blade leading edge cooling. Journal of Turbomachinery 141(4), 041007(1–15).##
Ekkad, S. and J. C. Han (2015). A review of hole geometry and coolant density effect on film cooling. Proceedings of the ASME 2013 Heat Transfer Summer Conference, Minneapolis, MN, USA##
Facchini, B. and L. Tarchi, L. Toni and A. Ceccherini (2010). Adiabatic and overall effectiveness measurements of an effusion cooling array for turbine endwall application. Journal of Turbomachinery 132(4), 041008(1–11).##
Fechter, S. A. Terzis, P. Ott, B. Weigand, J. V. Wolfersdorf and M. Cochet (2013). Experimental and numerical investigation of narrow impingement cooling channels. International Journal of Heat and Mass Transfer 67(Dec), 1208–1219.##
Han, J. C., S. Dutta and S. Ekkad (2012). Gas turbine heat transfer and cooling technology. Taylor & Francis Group, New York.##
Han, J. C., Y. M. Zhang and C. P. Lee (1991). Influence of surface heat flux ratio on heat transfer augmentation in square channels with parallel, crossed and v-shaped angled ribs. ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, Orlando, Florida, USA.##
Huang, Y., S. V. Ekkad and J. C. Han (1998). Detailed heat transfer distributions under an array of orthogonal impinging jets. International Journal of Thermophysics and Heat Transfer 12(1), 73–79.##
Lee, J., Z. Ren, P. Ligrani, M. D. Fox and H. K. Moon (2015). Crossflows from jet array impingement cooling: Hole spacing, target plate distance, Reynolds number effects. International Journal of Thermal Sciences 88(Feb), 7–18.##
Li, G. C., P. Yang, W. Zhang, Z. Wu and Z. H. Kou (2019). Enhanced film cooling performance of a row of cylindrical holes embedded in the saw tooth slot. Journal of Heat Mass Transfer 132(Apr), 1137–1151.##
Liu, L., X. Zhu, H. Liu and Z. Du (2018a). Effect of tangential jet impingement on blade leading edge impingement heat transfer. Journal of Heat and Mass Transfer 127(Nov), 639–650.##
Liu, C. L., G. Xie, R. Wang and L. Ye (2018b). Study on Analogy Principle of Overall Cooling Effectiveness for Composite Cooling Structures with Impingement and Effusion. Applied Thermal Engineering 130(5), 1380–1390.##
Lo, Y. H. and Y. H. Liu (2018). Heat transfer of impinging jet arrays onto half-smooth, half-rough target surfaces. Applied Thermal Engineering 128(5), 79–91.##
Luque, S., T. V. Jones and T. Povey (2017a). Effects of coolant density, specific heat capacity, and biot number on turbine vane cooling effectiveness. Journal of. Turbomachinery 139(11), 111005(1-11).##
Luque, S. and T. V. Jones (2017b). Scaling of turbine metal temperatures in cooled compressible flows-experimental demonstration of a new theory. Journal of. Turbomachinery 139(8), 081001(1-10).##
Luque, S., T. V. Jones and T. Povey (2016). Theory for the scaling of metal temperatures in cooled compressible flows. International Journal of Heat and Mass Transfer 102(Nov), 331–340.##
Mensch, A. and A. T. Karen (2014). Overall effectiveness of a blade endwall With jet impingement and film cooling. Journal of Engineering for Gas Turbines and Power 163(3), 031901(1-10).##
Mensch, A. and A. T. Karen (2016). Overall Effectiveness and Flowfield Measurements for an Endwall With Nonaxisymmetric Contouring. Journal of Engineering for Gas Turbines and Power 128(3), 031007(1-10).##
Moussa, A. B., H. Ksibi, C. Tenaud and M. Baccar (2005). Parametric study on the nozzle geometry to control the supercritical fluid expansion. International Journal of Thermal Sciences 44(Aug), 774–786.##
Murata, A. S., Nishada, H. Saito, K. Iwamoto, Y. Okita and C. Nakamata (2012). Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge. Journal of Turbomachinery 134(5), 051033(1-8).##
Qu, L. H., J. Z. Zhang and X. M. Tan (2017). Improvement on film cooling effectiveness by a combined slot-effusion scheme. Applied Thermal Engineering 126(5), 379–392.##
Rhee, D. H., Y. S. Kang, B. J. Cha and S. Lee (2017). Overall cooling effectiveness measurements on pressure side surface of the nozzle guide vane with optimized film cooling hole arrangements. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, North Carolina, USA.##
Sagot, B., G. Antonini, A. Christgen and F. Buron (2008). Jet impingement heat transfer on a flat plate at a constant wall temperature. International Journal of Thermal Sciences 47(Oct), 1601–1619.##
Schroeder, R. P. and K. A. Thole (2017). Thermal field measurements for a shaped hole at low and high freestream turbulence intensity. Journal of Turbomachinery 139(2), 021012(1-9).##
Sun, X., G. Zhao, P. Jiang, W. Peng and J. Wang (2018). Influence of hole geometry on film cooling effectiveness for a constant exit flow area. Applied Thermal Engineering 130(5), 1404–1415.##
Venkatasubramanya, S., S. A. Vasudev and S. Chandel (2012). Experimental Evaluation of Cooling Effectiveness of High Pressure Turbine Nozzle Guide Vane. ASME 2012 Gas Turbine India Conference, Mumbai, Maharashtra, India.##
Yang, X., Z. Liu, Q. Zhao, Z. Liu, Z. Feng, F. Guo, L. Ding and T. W. Simon (2019). Experimental and numerical investigations of overall cooling effectiveness on a vane endwall with jet impingement and film cooling. Applied Thermal Engineering 148(5), 1148–1163.##