Aerodynamic Analysis and Design Optimization of a Novel Flapping Wing Micro Air Vehicle in Hovering Flight

Document Type : Regular Article

Authors

1 Mechanical and Electrical Engineering Department, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China

2 Mechanical and Electrical Engineering Department, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China

Abstract

Inspired by the challenging and nimble flight dynamics of flying insects and birds, this research investigates bionic propulsion technology to develop an improved flapping wing micro air vehicle (FWMAV) design. Following the bionic formula, a prototype is preliminarily designed to achieve multi-attitude flight. Then, kinematic modeling is employed for further data analysis. A meshless particle hydrodynamics method is adopted to explore an optimized flapping driving mechanism and understand the influence of the flapping frequency, flapping amplitude, and quick-return characteristics of one side of the symmetrical mechanism on aerodynamic performance. Based on the aerodynamic model, force measurement experiments are developed to verify simulation availability and investigate the importance of wing flexibility. The numerical analysis results demonstrate that the average lift is approximately proportional to the flapping frequency, flapping-wing amplitude, and quick-return characteristics. Further optimization is conducted to find the best design parameters setting because of the complicated coupling relationship between the flapping wing amplitude and quick-return characteristics. Moreover, the optimized wing property supports high aerodynamic performance via experimental analysis in hovering flight.

Keywords


Apker, T. B. and T. C. Corke (2015). Experiments and modeling of micro flapping wings of different designs in hover. AIAA Journal 53(3), 542-553.##
Arastehfar, S., C. M. Chew, A. Jalalian, G. Gunawan and K. S. Yeo (2019). A relationship between sweep angle of flapping pectoral fins and thrust generation. Journal of Mechanisms and Robotics 11(1), 011014.##
Armanini, S. F., J. V. Caetano, G. de Croon, C. C. de Visser and M. Mulder (2016). Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data. Bioinspiration & Biomimetics 11(4), 046002.##
Bharadwaj, A. S. and S. Ghosh (2020). Numerical investigation of lift enhancement in flapping hover flight. Physics of Fluids 32(5), 051901.##
Cho, H., J. Kwak, S. Shin, N. Lee and S. Lee (2016). Flapping-wing fluid–structural interaction analysis using corotational triangular planar structural element. AIAA Journal 54(8), 2265-2276.##
Combes, S. A. and T. L. Daniel (2003). Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. Journal of Experimental Biology 206(17), 2999-3006.##
Cros, A., B. Franco Llamas and E. Sandoval Hernández (2018). Vortical patterns generated by flapping foils of variable ratio chord-to-thickness. Experiments in Fluids 59(10), 1-9.##
Deng, S., M. Perçin, B. W. van Oudheusden, H. Bijl, B. Remes and T. Xiao (2017). Numerical simulation of a flexible x-wing flapping-wing micro air vehicle. AIAA Journal 55(7), 2295-2306.##
Dong, Y., B. Song, D. Xue and W. Yang (2022). 3D Numerical Simulation of a Hovering Hummingbird-inspired Flapping Wing with Dynamic Morphing. Journal of Applied Fluid Mechanics 15(3), 873-888.##
Ellington, C. P. (1984). The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 305(1122), 17-40.##
Floreano, D. and R. J. Wood (2015). Science, technology and the future of small autonomous drones. Nature 521(7553), 460-466.##
Heathcote, S. and I. Gursul (2007). Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA Journal 45(5), 1066-1079.##
Kajak, K. M., M. Karásek, Q. P. Chu and G. C. H. E. De Croon (2019). A minimal longitudinal dynamic model of a tailless flapping wing robot for control design. Bioinspiration & Biomimetics 14(4), 046008.##
Karásek, M., F. T. Muijres, C. De Wagter, B. D. Remes and G. C. De Croon (2018). A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science 361(6407), 1089-1094.##
Keennon, M., K. Klingebiel and H. Won (2012, January). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, USA.##
Kumar, G. V. and D. A. Shah (2017). Aerodynamics of Flapping Wings for Vertical Takeoff. Journal of Applied Fluid Mechanics 10(6), 1689-1697.##
Li, F., P. Yu, N. Deng, G. Li and X. Wu (2022). Numerical Analysis of the Effect of the Non-Sinusoidal Trajectories on the Propulsive Performance of a Bionic Hydrofoil. Journal of Applied Fluid Mechanics 15(3), 17-925.##
Liu, Q., Q. Li, X. Zhou, P. Xu, L. Ren and S. Pan (2019). Development of a novel flapping wing micro aerial vehicle with elliptical wingtip trajectory. Mechanical Sciences 10(2), 355-362.##
Martínez Gallar, B., B. W. van Oudheusden, A. Sciacchitano and M. Karásek (2020). Large-scale volumetric flow visualization of the unsteady wake of a flapping-wing micro air vehicle. Experiments in Fluids 61(1), 1-21.##
Mayo, D. B., J. L. Lankford, M. Benedict and I. Chopra (2015). Experimental and computational analysis of rigid flapping wings for micro air vehicles. Journal of Aircraft 52(4), 1161-1178.##
Nguyen, Q. V., W. L. Chan and M. Debiasi (2017). Experimental investigation of wing flexibility on force generation of a hovering flapping wing micro air vehicle with double wing clap-and-fling effects. International Journal of Micro Air Vehicles 9(3), 187-197.##
Perçin, M., B. W. van Oudheusden, G. C. H. E. De Croon and B. Remes (2016). Force generation and wing deformation characteristics of a flapping-wing micro air vehicle ‘DelFly II’in hovering flight. Bioinspiration & biomimetics 11(3), 036014.##
Phan, H. V., Q. T. Truong and H. C. Park (2017). An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight. Bioinspiration & Biomimetics 12(3), 036009.##
Qadri, M., A. Shahzad, F. Zhao and H. Tang (2019). An experimental investigation of a passively flapping foil in energy harvesting mode. Journal of Applied Fluid Mechanics 12(5), 1547-1561.##
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology 206(23), 4191-4208.##
Seshadri, P., M. Benedict and I. Chopra (2013). Understanding micro air vehicle flapping-wing aerodynamics using force and flowfield measurements. Journal of Aircraft 50(4), 1070-1087.##
Shahzad, A., M. Qadri and S. Ahmad (2019). Numerical analysis of high aspect ratio flexible wings in flapping motion. Journal of Applied Fluid Mechanics 12(6), 1979-1988.##
Shyy, W., C. K. Kang, P. Chirarattananon, S. Ravi and H. Liu (2016). Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472(2186), 20150712.##
Shyy, W., H. Aono, C. K. Kang and H. Liu (2013). An Introduction to Flapping Wing Aerodynamics. Cambridge University Press. Cambridge, UK.##
Shyy, W., M. Berg and D. Ljungqvist (1999). Flapping and flexible wings for biological and micro air vehicles. Progress in aerospace sciences 35(5), 455-505.##
Syam Narayanan, S. and R. Asad Ahmed (2021). Effect of Fluid-Structure Interaction on Noise Generation in MAV with Fixed and Flapping Membrane Wing. Journal of Applied Fluid Mechanics 14(6), 1817-1826.##
Tay, W. B., B. W. van Oudheusden and H. Bijl (2015). Numerical simulation of a flapping four-wing micro-aerial vehicle. Journal of Fluids and Structures 55, 237-261.##
Wang, Z. J., J. M. Birch and M. H. Dickinson (2004). Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology 207(3), 449-460.##
Zhang, J., B. Cheng, B. Yao and X. Deng, (2015, May). Adaptive robust wing trajectory control and force generation of flapping wing MAV. In 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA.##