Bhattacharya, S. and A. Ahmed (2010). Effect of sinusoidal forcing on the wake of a circular cylinder. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, America.##
Bhattacharya, S. and A. Ahmed (2020). Effect of aspect ratio on the flow over a wall-mounted hemispherical turret. International Journal of Heat and Fluid Flow 84, 108600.##
Bhattacharya, S. and J. W. Gregory (2015a). Effect of three-dimensional plasma actuation on the wake of a circular cylinder. AIAA Journal 53(4), 958-967.##
Bhattacharya, S. and J. W. Gregory (2015b). Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator. Physics of Fluids 27(1), 014102.##
Bhattacharya, S. and J. W. Gregory (2018). Optimum-wavelength forcing of a bluff body wake. Physics of Fluids 30(1), 015101.##
Bhattacharya, S. and J. W. Gregory (2020). The effect of spatially and temporally modulated plasma actuation on cylinder wake. AIAA Journal 58(9), 3808–3818.##
Burcham Jr, F. W., G. B. Gllyard and P. A. Gelhausen (1990). Integrated flight-propulsion control concepts for supersonic transport airplanes. NASA Technique Memorandum 101728.##
Chouicha, R., M. Sellam and S. Bergheul (2020). Effect of reacting gas on the fluidic thrust vectoring of an axisymmetric nozzle. Propulsion and Power Research 1-15.##
Cong, R. F., Y. D. Ye, Z. L. Zhao, J. Q. Wu and C. F. Zhang (2019). Numerical research on jet tab thrust vector nozzle aerodynamic characteristics. Journal of Physics: Conference Series 1300, 012089.##
Das, S. S., J. C. Páscoa, M. Trancossi and A. Dumas (2016). Computational fluid dynamic study on a novel propulsive system: ACHEON and its integration with an unmanned aerial vehicle (UAV). Journal of Aerospace Engineering 29(1), 04015015.##
Deere, K. A. (2003). Summary of fluidic thrust vectoring research conducted at NASA Langley Research Center. In Proceedings of 21st AIAA Applied Aerodynamics Conference, Orlando, Florida, America.##
Deere, K. A., B. L. Berrier, J. D. Flamm and S. K. Johnson (2003). Computational study of fluidic thrust vectoring using separation control in a nozzle. In Proceedings of 21st AIAA Applied Aerodynamics Conference, Orlando, Florida, America.##
Deng, R. Y. and H. D. Kim (2015). A study on the thrust vector control using a bypass flow passage. Proceedings of the Institution of Mechanical Engineering, Part G: Journal of Aerospace Engineering 229(9), 1722-1729.##
Deng, R. Y., T. Setoguchi and H. D. Kim (2016). Large eddy simulation of shock vector control using bypass flow passage. International Journal of Heat and Fluid Flow 62, 474-481.##
Ferlauto, M. and R. Marsilio (2016). Numerical simulation of fluidic thrust-vectoring. Journal of Aerospace Science, Technology and system 95(3), 153-162.##
Gu, R., J. Xu and S. Guo (2014). Experimental and numerical investigations of a bypass dual throat nozzle. Journal of Engineering for Gas Turbines and Power 136(8), 084501.##
Heo, J. Y. and H. G. Sung (2012). Fluidic thrust-vector control of supersonic jet using coflow injection. Journal of Propulsion and Power 28(4), 858-861.##
Islam, M. S., M. A. Hasan and A. T Hasan (2018a). An analysis of thrust vectoring in a supersonic nozzle using bypass mass injection. In AIP Conference Proceedings, AIP Publishing LLC.##
Islam, M. S., M. A. Hasan, A. T Hasan and D. Zhang (2018b). Numerical analysis of bypass mass injection on thrust vectoring of supersonic nozzle. In MATEC Web of Conferences, EDP Sciences.##
Joshi, K. and S. Bhattacharya (2019). Large-eddy simulation of the effect of distributed plasma forcing on the wake of a circular cylinder. Computers and Fluids 193, 104295.##
Kong, F. S., Y. Z. Jin and H. D. Kim (2016). Thrust vector control of supersonic nozzle flow using a moving plate. Journal of Mechanical Science and Technology 30(3), 1209-1216.##
Roache, P. J. (1994). Perspective: a method for uniform reporting of grid refinement studies. Journal of Fluid Engineering 116(3), 405-413.##
Sellam, M., Z. Vladeta, L. Leger and A. Chpoun (2015). Assessment of gas thermodynamic characteristics on fluidic thrust vectoring performance: analytical, experimental and numerical study. International Journal of Heat and Fluid Flow 53, 156-166.##
Sung, H. G. and Y. S. Hwang (2004). Thrust-vector characteristics of jet vanes arranged in x-formation within a shroud. Journal of Propulsion and Power 20(3), 501-508.##
Waithe, K. A. and K. A. Deere (2003). Experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring. In Proceedings of 21st AIAA Applied Aerodynamics Conference, Orlando, Florida, America.##
Wang, Y. S., J. L. Xu, S. Huang, Y. C. Lin and J. J. Jiang (2019). Computational study of axisymmetric divergent bypass dual throat nozzle. Aerospace Science and Technology 86, 177-190.##
Wu, K. X. (2022). Study on aerodynamic features of rod thrust vector control for physical applications. Proceedings of the Institution of Mechanical Engineering, Part G: Journal of Aerospace Engineering, 1-21.##
Wu, K. X. and H. D. Kim (2019a). Numerical study on the shock vector control in a rectangular supersonic nozzle. Proceedings of the Institution of Mechanical Engineering, Part G: Journal of Aerospace Engineering 233(13), 4943-4965.##
Wu, K. X. and H. D. Kim (2019b). Study on fluidic thrust vector control based on dual-throat concept. Journal of Korean Society of Propulsion Engineers 23(1), 24-32.##
Wu, K. X. and H. D. Kim (2019c). Fluidic thrust vector control using shock wave concept. Journal of Korean Society of Propulsion Engineers 23, 10-20.##
Wu, K. X. and H. D. Kim (2021). A fluidic thrust vector control using the bypass flow in a dual throat nozzle. Journal of Mechanical Science and Technology 35(8), 1-10.##
Wu, K. X., A. Suryan and H. D. Kim (2019a). Assessment of aerodynamic characteristics on shock vector control. Recent Asian Research on Thermal and Fluid Sciences 669-685.##
Wu, K. X., H. D. Kim and Y. Z. Jin (2018). Fluidic thrust vector control based on counter-flow concept. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233(4), 1412-1422.##
Wu, K. X., S. K. Raman, V. R. P. Sethuraman, G. Zhang and H. D. Kim (2020a). Effect of the wall temperature on Mach stem transformation in pseudo-steady shock wave reflections. International Journal of Heat and Mass Transfer 147, 118927.##
Wu, K. X., T. H. Kim and H. D. Kim (2020b). Sensitivity analysis on counter-flow thrust vector control with a three-dimensional rectangular nozzle. Journal of Aerospace Engineering 34(1), 04020107.##
Wu, K. X., T. H. Kim and H. D. Kim (2020c). Theoretical and numerical analyses of aerodynamic characteristics on shock vector control. Journal of Aerospace Engineering 33(5), 04020050.##
Wu, K. X., Y. Z. Jin and H. D. Kim (2019b). Hysteresis behaviors in counter-flow thrust vector control. Journal of Aerospace Engineering 32(4), 04019041.##
Yagle, P. J., D. N. Miller, K. B. Ginn and J. W. Hamstra (2001). Demonstration of fluidic throat skewing for thrust vectoring in structurally fixed nozzles. Journal of Engineering for Gas Turbines and Power 123(3), 502–507.##
Zmijanovic, V., L. Leger and E. Depussay (2016). Experimental-numerical parametric investigation of a rocket nozzle secondary injection thrust vectoring. Journal of Propulsion and Power 32(1), 196-213.##
Zmijanovic, V., L. Leger, V. Lago, M. Sellam and A. Chpoun (2012). Experimental and numerical study of thrust-vectoring effects by transverse gas injection into a propulsive axisymmetric C-D nozzle. In Proceedings of 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Atlanta, Georgia, America.##
Zmijanovic, V., V. Lago and A. Chpoun (2014). Thrust shock vector control of an axisymmetric conical supersonic nozzle via secondary transverse gas injection. Shock Waves 24(1), 97-111.##
Zou, X. H. and Q. Wang (2011). The comparative analysis of two typical fluidic thrust vectoring exhaust nozzles on aerodynamic characteristics. International Journal of Aerospace and Mechanical Engineering 5(4), 827-833.##
Zucker, R. D. and O. Biblarz (2002). Fundamentals of Gas Dynamics. Wiley, America.##