Ahmad, N., A. Kamath and H. Bihs (2020). 3D numerical modelling of scour around a jacket structure with dynamic free surface capturing. Ocean Engineering 200, 107104. https://doi.org/10.1016/j.oceaneng.2020.10710##
Al-Shukur, A. H. K. and Z. H. Obeid (2016). Experimental Study of Bridge Pier Shape To Minimize Local Scour. International Journal of Civil Engineering and Technology (IJCIET) 7(1), 162–171.##
Ali, K. and Q. Karim (2002). Simulation of flow around piers. Journal of Hydraulic Research 40(2), 161–174. https://doi.org/10.1080/00221680209499859##
Arneson, L., L. Zevenbergen and P. Clopper (2012). Evaluating scour at bridges (Issue 18).##
Baghbadorani, D. A., B. Ataie-Ashtiani, A. Beheshti, M. Hadjzaman and M. Jamali (2018). Prediction of current-induced local scour around complex piers: Review, revisit, and integration.
Coastal Engineering 133, 43–58.
https://doi.org/10.1016/j.coastaleng.2017.12.006##
Baranya, S., N. R. B. Olsen, T. Stoesser and T. W. Sturm (2014). A nested grid based computational fluid dynamics model to predict bridge pier scour.
Proceedings of the Institution of Civil Engineers: Water Management 167(5), 259–268.
https://doi.org/10.1680/wama.12.00104##
Barnes, D. K. A. and T. Souster (2011). Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Climate Change 1(7), 365–368.##
Bhattacharya, S. and J. Gregory (2015). Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator.
Physics of Fluids.
https://doi.org/10.1063/1.4905536##
Bollaert, E. (2004). A comprehensive model to evaluate scour formation in plunge pools. International Journal on Hydropower and Dams 11(1), 94–101.##
Breusers, H. and A. Raudkivi (1991). Scouring, hydraulic structures design manual. In AA Balkema, Rotterdam.##
Chen, H. (2002). Numerical simulation of scour around complex piers in cohesive soil. 1st International Conference on Scour of Foundations (ICSF-1).##
Choi, S. and W. Yang (2002). Numerical simulations of 3-D flows around bridge piers. 1st Int. Conf. on Scour of Foundations.##
Daido, A. and S. Yano (1995). Scour around bridge piers and its protection with guide wall and slanting plate and piers surface. Sixth International Symposium on River Sedimentation, 1181–1187.##
Damroudi, M., K. Esmaili and S. H. Rajaie (2021). Effect of pipeline external geometry on local scour and self-burial time scales in current. Journal of Applied Fluid Mechanics 14(1), 103–115.##
Das, I., R. Bell, T. Scambos, M. Wolovick, T. Creyts, M. Studinger, N. Frearson, J. P. Nicolas, J. T. M. Lenaerts and M. R. Van Den Broeke (2013). Influence of persistent wind scour on the surface mass balance of Antarctica. Nature Geoscience 6(5), 367–371.##
Dolinar, B. (2010). Predicting the normalized, undrained shear strength of saturated fine-grained soils using plasticity-value correlations.
Applied Clay Science 47(3), 428–432.
https://doi.org/10.1016/j.clay.2009.12.013##
Espa, P. and S. Sibilla (2014). Experimental study of the scour regimes downstream of an apron for intermediate tailwater depth conditions.
Journal of Applied Fluid Mechanics 7(4), 611–624.
https://doi.org/10.36884/jafm.7.04.21238##
Fisher, D., R. Koerner, W. Paterson, W. Dansgaard, N. Gundestrup and N. Reeh (1983). Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature 301(5897), 205–209.##
García, M. (2007). ASCE manual of practice 110-sedimentation engineering: Processes, measurements, modeling, and practice. Examining the Confluence of Environmental and Water Concerns -
Proceedings of the World Environmental and Water Resources Congress 2006.
https://doi.org/10.1061/40856(200)94##
Gee, K. (2008). National bridge inspection standards scour evaluations and plans of action for scour critical bridges.##
Hunt, B. E. (2009). Monitoring Scour Critical Bridges. NCHRP Synthesis 396.##
Jain, S. and E. Fischer (1979). Scour around circular bridge piers at high Froude numbers.##
Kirki, G. and G. Constantinescu (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder.
Physics of Fluids 27(7), 075102.
https://doi.org/10.1063/1.4923063##
Koken, M. and G. Constantinescu (2009). An investigation of the dynamics of coherent structures in a turbulent channel flow with a vertical sidewall obstruction.
Physics of Fluids 21, 085104.
https://doi.org/10.1063/1.3207859##
Koken, M. and G. Constantinescu (2008). An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process.
Water Resources Research 44(8), W08406.
https://doi.org/10.1029/2007WR006489##
Kumar, C. and P. Sreeja (2012). Evaluation of selected equations for predicting scour at downstream of ski-jump spillway using laboratory and field data.
Engineering Geology 129, 98–103.
https://doi.org/10.1016/j.enggeo.
2012.01.014##
Lee, S. and T. Sturm (2008). Scaling issues for laboratory modeling of bridge pier scour. Procedding of 4th International Conference on Scour and Erosion.##
Liang, F., C. Wang, M. Huang and Y. Wang (2017). Experimental observations and evaluations of formulae for local scour at pile groups in steady currents.
Marine Georesources and Geotechnology 35(2), 245–255.
https://doi.org/
10.1080/1064119X.2016.1147510##
Liang, F., C. Wang, Y. Wang and M. Huang (2015). Analysis on flume test of local scour around pile groups embedded in sandy-cohesive soil. Shuili Xuebao/Journal of Hydraulic Engineering 46(Supp. 1), 79–83.##
Melville, B. (1992). Local scour at bridge abutments. Journal of Hydraulic Engineering 118(4), 615–631. https://doi.org/10.1061/(asce)0733-9429(1992)118:4(615)##
Melville, B. and S. Coleman (2000). Bridge Scour. In Water Resources Research, LLC (Vol. 36, Issue 12).##
Moghanloo, M., M. Vaghefi and M. Ghodsian (2020). Experimental investigation on the effect of increasing the collar thickness on the flow pattern around the oblong pier in 180̊ sharp bend with balanced bed. Journal of Applied Fluid Mechanics 13(1), 245–260.##
Mohamed, T., M. Noor, A. Ghazali and B. Huat (2005). Validation of some bridge pier scour formulae using field and laboratory data.
American Journal of Environmental Sciences, 1(2), 119–125.
https://doi.org/10.3844/ajessp.
2005.119.125##
Moncada-M, A., J. Aguirre-Pe, J. Bolívar and E. Flores (2009). Scour protection of circular bridge piers with collars and slots.
Journal of Hydraulic Research 47(1).
https://doi.org/
10.3826/jhr.2009.3244##
Nurtjahyo, P., H. Chen, J. Briaud, Y. Li and J. Wang (2002). Bed shear stress around rectangular pier: numerical approach.
First International Conference on Scour of Foundations.
https://hdl.handle.net/20.500.11970/100338##
Odgaard, A. and Y. Wang (1987). Scour prevention at bridge piers. Hydraulic Engineering.##
Paik, J., C. Escauriaza and F. Sotiropoulos (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction.
Physics of Fluids 19(3), 47–55.
https://doi.org/10.1063/1.2716813##
Park, C., H. Park and Y. Cho (2017). Evaluation of the applicability of pier local scour formulae using laboratory and field data. Marine Georesources and Geotechnology 35(1), 1–7. https://doi.org/10.1080/1064119X.2014.954658##
Parker, G., C. Toro-Escobar and R. Voigt (1998). Countermeasures to protect bridge piers from scour, in: NCHRP 24-7 : Vol 2. National Cooperative Highway Research Program, Minneapolis.##
Pereira, F. S., L. Eça, G. Vaz and S. S. Girimaji (2021). Toward predictive RANS and SRS computations of turbulent external flows of practical interest. Archives of Computational Methods in Engineering 28, 3953–4029.##
Ramos, P., R. Maia, L. Schindfessel, T. De Mulder and J. Pego (2016). Large eddy simulation of the water flow around a cylindrical pier mounted in a flat and fixed bed.
6th IAHR IJREWHS 2016.
https://doi.org/10.15142/
T3C014##
Richardson, E. and S. Davis (2001a). Evaluating scour at bridges. In Hydraulic Engineering Circular No. 18 (Issue 18). https://www.engr.colostate.edu/CIVE510/Manuals/HEC-18 4th Ed.(2001) - Evaluating Scour at Bridges.pdf##
Richardson, E. and S. Davis (2001b). HEC 18: Evaluating Scour At Bridges Fourth Edition. Hydraulic Engineering Circular, 18, 378.##
Roulund, A., B. Sumer, J. Fredsoe and J. Mitchelsen (2005). Numerical and experimental investigation of flow and scour around a circular pile.
Journal of Fluid Mechanics 534, 351–401.
https://doi.org/10.1017/
S0022112005004507##
Salim, M. and J. S. Jones (1996). Scour around exposed pile foundations. North American Water and Environment Congress & Destructive Water, 2202–2211.##
Sheppard, D., G. Zhao and B. Ontowirjo (1995). Local scour near single piles in steady currents. International Water Resources Engineering Conference - Proceedings.##
Triatmadja, R. (2019). The Use of Dam Break Model to Simulate Tsunami Run-up and Scouring Around a Vertical Cylinder. Journal of Applied Fluid Mechanics 12(5), 1395–1406.##
Whitehouse, R. J. S., J. M. Harris, J. Sutherland and J. Rees (2011). The nature of scour development and scour protection at offshore windfarm foundations.
Marine Pollution Bulletin 62(1), 73–88.
https://doi.org/
10.1016/j.marpolbul.2010.09.007##
Xie, F. and D. Levinson (2011). Evaluating the effects of the I-35W bridge collapse on road-users in the twin cities metropolitan region.
Transportation Planning and Technology 34(7), 691–703.
https://doi.org/10.1080/
03081060.2011.602850##
Yao, W., S. Draper, H. An, L. Cheng, J. M. Harris and R. J. S. Whitehouse (2020). Effect of a skirted mudmat foundation on local scour around a submerged structure.
Ocean Engineering 218, 108127.
https://doi.org/
10.1016/j.oceaneng.2020.108127##
Zhang, Z. and B. Shi (2016). Numerical simulation of local scour around underwater pipeline based on FLUENT software. Journal of Applied Fluid Mechanics 9(2), 711–718. https://doi.org/
10.18869/acadpub.jafm.68.225.22810##
Zhu, Z., P. Yu and Z. Liu (2014). On CFD dynamic simulation of local scour around bridge abutments. Tumu Gongcheng Xuebao/China Civil Engineering Journal 47(3), 103–111.##