Abhari, F., H. Jaafar and N. A. Md Yunus (2012). A comprehensive study of micropumps technologies. International Journal of Electrochemical Science 7 (10), 9765-9780.##
Byrne, D. M. and S. Taguchi (1987). The Taguchi approach to parameter design. Quality Progress 20 (12),19-26.##
Cartin, C. P., R. M. Pidaparti and G. M. Atkinson (2008). Design and fabrication of a PDMS micropump with moving membranes. In 2008 17th Biennial University/Government/ Industry Micro/Nano Symposium, IEEE.##
Cui, Q., C. Liu and X. F. Zha (2008). Simulation and optimization of a piezoelectric micropump for medical applications. The International Journal of Advanced Manufacturing Technology 36(5–6), 516-524.##
Currie, I. G. (2016). Fundamental Mechanics of Fluids. CRC Press.##
He, X., S. C. Cai, Z. D. Deng and S. Yang (2017). Experimental and numerical study of flow characteristics of flat-walled diffuser/nozzles for valveless piezoelectric micropumps. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231 (12), 2313-2326.##
Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operatorsplitting. Journal of Computational Physics 62, 40-65.##
Iverson, B. D. and S. V. Garimella (2008). Recent advances in microscale pumping technologies: a review and evaluation. Microfluidics and Nanofluidics 5(2), 145-174.##
Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. Journal of Quality Technology 17(4),176-188.##
Karimi, S., P. Mehrdel, J. Farré-Lladós and J. Casals-Terré (2019). A passive portable microfluidic blood–plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing. Lab on a Chip 19, 3249-3260.##
Karimi, S., M. Mojaddam, S. Majidi, P. Mehrdel, J. Farré-Lladós and J. Casals-Terré (2021). Numerical and experimental analysis of a high-throughput blood plasma separator for point-of-care applications. Analytical and Bioanalytical Chemistry 413, 2867-2878.##
Khuri, A. I. and S. Mukhopadhyay (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2(2), 128-149.##
Kim, Y. S., J. H. Kim, K. H. Na and K. Rhee (2005). Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219(10), 1139-1145.##
Koombua, K., R. M. Pidaparti and G. M. Atkinson (2008). Microfluidic simulations of micropump with multiple vibrating membranes. In Proceedings of the 11th International Conference on Modeling and Simulation of Microsystems, Boston, MA.##
Koombua, K. and R. M. Pidaparti (2010). Performance evaluation of a micropump with multiple pneumatic actuators via coupled simulations. Engineering Applications of Computational Fluid Mechanics 4(3),357-364.##
Kumar, C. S. S. R. (2010). Microfluidic devices in nanotechnology: applications. John Wiley & Sons.##
Lee Rodgers, J. and W. A. Nicewander (1988). Thirteen ways to look at the correlation coefficient. The American Statistician 42(1), 59-66.##
Li, Z. and X. Zheng (2017). Review of design optimization methods for turbomachinery aerodynamics. Progress in Aerospace Sciences 93, 1-23.##
Mason, R. L., R. F. Gunst and J. L. Hess (2003). Statistical Design and Analysis of Experiments: With Applications to Engineering and Science. John Wiley & Sons.##
Mojaddam, M. and K. R. Pullen (2019). Optimization of a centrifugal compressor using the design of experiment technique. Applied Sciences 9(2), 291.##
Montgomery, D. C. and G. C. Runger (2010). Applied Statistics and Probability for Engineers. John Wiley & Sons.##
Montgomery, D. C. (2017). Design and Analysis of Experiments. John wiley & sons.##
Myers, R. H., D. C. Montgomery, G. G. Vining, C. M. Borror and S. M. Kowalski (2004). Response surface methodology: a retrospective and literature survey. Journal of Quality Technology 36(1), 53-77.##
Namazizadeh, M., M. Talebian Gevari, M. Mojaddam and M. Vajdi (2020). Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment. Journal of Applied Fluid Mechanics 13(1), 89-101.##
Noruz Shamsian, O., A. Mohseni and M. Mojaddam (2020). Design of a microseparator for circulating tumor cells (CTCs) from blood flow using hybrid pinched flow fractionation (PFF) and dielectrophoresis methods. Journal of Solid and Fluid Mechanics 10(1), 281-296. (in Persian).##
Ohnstein, T., T. Fukiura, J. Ridley and U. Bonne (1990). Micromachined silicon microvalve. In IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.##
Patankar, S. V. and D. B. A. Spalding (1972). Calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer 15, 1787-1806.##
Piterah, N. S. M., N. R. Ong, M. H. A. Aziz, J. B. Alcain, W. M. W. N. Haimi and Z. Sauli (2017). Investigation of micropump mechanism for medical application (blood transport application). In AIP Conference Proceedings, volume 1885, page 020299 (5pp).##
Saggere, L. (2015) Membrane actuation for micropumps. In Li, Dongqing, (Ed.), Encyclopedia of Microfluidics and Nano-fluidics, pages 1741–1746. Springer US,##
Sateesh, J., K. G. Sravani, R. A. Kumar, K. Guha and K. S. Rao (2018). Design and flow analysis of MEMS based piezo-electric micro pump. Microsystem Technologies 24(3), 1609-1614.##
Shoji, S., S. Nakagawa and M. Esashi (1990). Micropump and sample-injector for integrated chemical analyzing systems. Sensors and Actuators A: Physical 21(13), 189-192.##
Smits, J. G. (1990). Piezoelectric micropump with three valves working peristaltically. Sensors and Actuators A: Physical 21(13), 203-206.##
Stemme, E. and G. Stemme (1993). A valveless diffuser/nozzlebased fluid pump. Sensors and Actuators A: Physical 39(2), 159-167.##
Su, G. and R. M. Pidaparti (2010). Transport of drug particles in micropumps through novel actuation. Microsystem Technologies 16(4), 595-606.##
Taguchi, G. (1987). Engineering methods to optimize quality and minimize costs. System of Experimental Design 1, 1-85.##
Verma, P., D. Chatterjee and T. Nagarajan (2009). Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223(4), 953-963.##
Yamahata, C., C. Lotto, E. Al-Assaf and M. A. M. Gijs (2005). A PMMA valveless micropump using electromagnetic actuation. Microfluidics and Nanofluidics 1(3),197-207.##
Yao, J., G. R. Liu, D. Qian, C. L. Chen and G. X. Xu (2013). A moving-mesh gradient smoothing method for compressible CFD problems. Mathematical Models and Methods in Applied Sciences 23(2), 273-305.##
Yao, Q., D. Xu, L. S. Pan, A. L. Melissa Teo, W. M. Ho, V. S. Peter Lee and M. Shabbir (2007). CFD simulations of flows in valveless micropumps. Engineering Applications of Computational Fluid Mechanics 1(3), 181-188.##
Yazdani, A. and A. Mohseni (2017). Three-dimensional aerothermodynamic optimization of the stator blade of an axial-flow gas turbine in an open-source platform. Modares Mechanical Engineering 17(10), 176-184. (in Persian).##
Zahn, J. D. (2015). Integrated microdevices for medical diagnostics. In Li, Dongqing (ed.) Encyclopedia of Microfluidics and Nanofluidics, pages 1411– 1418. Springer New York.##
Zengerle, R. and M. Richter (1994). Simulation of microfluid systems. Journal of Micromechanics and Microengineering 4(4), 192.##
Zhu, M., P. Kirby, M. Wacklerle, M. Herz and M. Richter (2009). Optimization design of multimaterial micropump using finite element method. Sensors and Actuators A: Physical 149(1),130-135.##