Ahmed, S. R., Ramm, G., & Faltin, G. (1984). Some salient features of the time-averaged ground vehicle wake.
SAE Transactions, 93(2), 473–503.
https://doi.org/10.4271/840300##
ANSYS, I. (2018). ANSYS User’s Guide.##
Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming. An introduction on the automatic evolution of computer programs and its applications. Morgan Kaufmann Publishers Inc.##
Cornejo MacEda, G. Y., Li, Y., Lusseyran, F., Morzyński, M., & Noack, B. R. (2021). Stabilization of the fluidic pinball with gradient-enriched machine learning control.
Journal of Fluid Mechanics, 917, A42.
https://doi.org/10.1017/jfm.2021.301##
Cornejo Maceda, G. Y., Noack, B. R., Lusseyran, F., Deng, N., Pastur, L., & Morzynski, M. (2019). Artificial intelligence control applied to drag reduction of the fluidic pinball.
PAMM, 19(1), e201900268.
https://doi.org/10.1002/pamm.201900268##
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
https://doi.org/10.1109/4235.996017##
Delassaux, F., Mortazavi, I., Itam, E., Herbert, V., & Ribes, C. (2021). Sensitivity analysis of hybrid methods for the flow around the Ahmed body with application to passive control with rounded edges.
Computers and Fluids, 214,
104757.
https://doi.org/10.1016/j.compfluid.2020.104757##
Doyle, J. B., Hartfield, R. J., & Roy, C. (2008).
Aerodynamic optimization for freight trucks using a genetic algorithm and CFD. 46th AIAA Aerospace Sciences Meeting and Exhibit (p.323).
https://doi.org/10.2514/6.2008-323##
Fan, D., Zhang, B., Zhou, Y., & Noack, B. R. (2020). Optimization and sensitivity analysis of active drag reduction of a square-back Ahmed body using machine learning control.
Physics of Fluids, 32(12), 125117.
https://doi.org/10.1063/5.0033156##
Gautier, N., Aider, J. L., Duriez, T., Noack, B. R., Segond, M., & Abel, M. (2015). Closed-loop separation control using machine learning.
Journal of Fluid Mechanics, 770,
442-457.
https://doi.org/10.1017/jfm.2015.95##
George, A. R., & Donis, J. E. (1983, November 13-18). Flow patterns, pressures, and forces on the underside of idealized ground effect vehicles. Aerodynamics of Transportation-ii, ASME Winter Annual Meeting, Boston, USA.##
Hanfeng, W., Yu, Z., Chao, Z., & Xuhui, H. (2016). Aerodynamic drag reduction of an Ahmed body based on deflectors.
Journal of Wind Engineering and Industrial Aerodynamics, 148, 34–44.
https://doi.org/10.1016/j.jweia.2015.11.004##
Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., & Prasath, V. B. S. (2019). Choosing mutation and crossover ratios for genetic algorithms-a review with a new dynamic approach.
Information (Switzerland), 10(12).
https://doi.org/10.3390/info10120390##
Lee, C., Kim, J., Babcock, D., & Goodman, R. (1997). Application of neural networks to turbulence control for drag reduction.
Physics of Fluids, 9(6), 1740-1747.
https://doi.org/10.1063/1.869290##
Li, R., Noack, B. R., Cordier, L., Borée, J., & Harambat, F. (2017). Drag reduction of a car model by linear genetic programming control.
Experiments in Fluids, 58(8), 1–20.
https://doi.org/10.1007/s00348-017-2382-2##
Li, Y., Cui, W., Jia, Q., Li, Q., Yang, Z., Morzyński, M., & Noack, B. R. (2022). Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body.
Journal of Fluid Mechanics, 932, A7.
https://doi.org/10.1017/jfm.2021.974##
Lienhart, H., Stoots, C., & Becker, S. (2002).
Flow and turbulence structures in the wake of a simplified car model (Ahmed Modell). New Results in Numerical and Experimental Fluid Mechanics III, Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-45466-3_39##
Meile, W., Brenn, G., Reppenhagen, A., Lechner, B., & Fuchs, A. (2012). Experiments and numerical simulations on the aerodynamics of the Ahmed body. CFD letters, 3(1), 32-39.##
Moghimi, P., & Rafee, R. (2018). Numerical and experimental investigations on aerodynamic behavior of the Ahmed body model with different diffuser angles.
Journal of Applied Fluid Mechanics, 11(4),1101-1113.
https://doi.org/10.29252/JAFM.11.04.27923##
Patrikalakis, N. M., & Maekawa, T. (2010).
Shape interrogation for computer aided design and manufacturing. Shape Interrogation for Computer Aided Design and Manufacturing Heidelberg, Springer.
https://doi.org/10.1007/978-3-642-04074-0##
Raibaudo, C., Zhong, P., Noack, B. R., & Martinuzzi, R. J. (2020). Machine learning strategies applied to the control of a fluidic pinball.
Physics of Fluids, 32(1), 015108.
https://doi.org/10.1063/1.5127202##
Ren, F., Wang, C., & Tang, H. (2019). Active control of vortex-induced vibration of a circular cylinder using machine learning.
Physics of Fluids, 31(9), 093601.
https://doi.org/10.1063/1.5115258##
Ren, K., Chen, Y., Gao, C., & Zhang, W. (2020). Adaptive control of transonic buffet flows over an airfoil.
Physics of Fluids, 32(9),096106.
https://doi.org/10.1063/5.0020496##
Wu, Z., Fan, D., Zhou, Y., Li, R., & Noack, B. R. (2018). Jet mixing optimization using machine learning control.
Experiments in Fluids, 59(8), 1-17.
https://doi.org/10.48550/arXiv.1802.01252##
Yu, M. G., Zhang, J. Y., & Zhang, W. H. (2013). Multi-objective optimization design method of the high-speed train head.
Journal of Zhejiang University: Science A, 14(9).
https://doi.org/10.1631/jzus.A1300109##
Yu, Z., & Bingfu, Z. (2021). Recent advances in wake dynamics and active drag reduction of simple automotive bodies.
Applied Mechanics Reviews, 73(6), 060801.
https://doi.org/10.1115/1.4053132##
Yuan, C. Y., & Li, M. Q. (2017). Multi-objective optimization for the aerodynamic noise of the high-speed train in the near and far field based on the improved NSGA-II algorithm.
Journal of Vibroengineering, 19(6), 4759–4782.
https://doi.org/10.21595/jve.2017.18526##
Zdravkovich, M. M. (1981). Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding.
Journal of Wind Engineering and Industrial Aerodynamics,
7(2), 145–189.
https://doi.org/10.1016/0167-6105(81)90036-2##
Zhou, Y., Zhou, Y., Fan, D., Zhang, B., Li, R., Li, R., Noack, B. R., Noack, B. R., & Noack, B. R. (2020). Artificial intelligence control of a turbulent jet.
Journal of Fluid Mechanics, 897,
A27.
https://doi.org/10.1017/jfm.2020.392##