Augusti, G., Spinelli, P., Bartoli, G., Borri, C., Giachi, M., & Giordano, S. (1995). The C.R.I.A.C.I.V. Atmospheric Boundary Layer Wind Tunnel. Proceedings of the 9th International Conference on Wind Engineering (ICWE).##
Blocken, B., Carmeliet, J. & Stathopoulos, T. (2007b). CFD evaluation of wind speed conditions in passages between parallel buildings-effect of wall-function roughness modifications for the atmospheric boundary layer flow.
Journal of Wind Engineering and Industrial Aerodynamics,
95(9–11), 941–962.
https://doi.org/10.1016/j.jweia.2007.01.013##
COMSOL. (2016). Guide COMSOL: Introduction to COMSOL Multiphysics.##
ESDU. (1985). Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong winds (neutral atmosphere). Data Item 85020, Engineering.##
Hargreaves, D. M., & Wright, N. G. (2007). On the use of the k –epsilon model in commercial CFD software to model the neutral atmospheric boundary layer.
Journal of Wind Engineering & Industrial Aerodynamics,
95, 355–369.
https://doi.org/10.1016/j.jweia.2006.08.002##
Franke, J., Hirsch, C., Jensen, A. G., Krüs, H. W., Schatzmann, M., Westbury, P. S., Miles, S. D., Wisse, J. A., & Wright, N. G. (2004). Recommendations on the Use of CFD in Wind Enginnering. Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics, in: Van Beeck JPAJ (Ed.), COST Action C14, Impact of Wind and Storm on City Life Built Environment.##
Juretic, F., & Kozmar, H. (2013). Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k – e turbulence model.
International Journal of Wind Engineering and Industrial Aerodynamics,
115, 112–120.
https://doi.org/10.1016/j.jweia.2013.01.011##
Kozmar, H., Allori, D., Bartoli, G., & Borri, C. (2018). Wind characteristics in wind farms situated on a hilly terrain.
Journal of Wind Engineering & Industrial Aerodynamics, 174(January), 404–410.
https://doi.org/10.1016/j.jweia.2018.01.008##
Lubitz, W., & White, B. R. (2007). Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills.
Journal of Wind Engineering & Industrial Aerodynamics, 95, 639–661.
https://doi.org/10.1016/j.jweia.2006.09.001##
Narjisse, A., & Abdellatif, K. (2021). Assessment of RANS turbulence closure models for predicting airflow in neutral ABL over hilly terrain.
International Review of Applied Sciences and Engineering, 12(3), 238–256.
https://doi.org/10.1556/1848.2021.00264##
Norris, S. E., & Richards, P. J. (2010). Appropriate boundary conditions for computational wind engineering models revisited. The Fifth International Symposium on Computational Wind Engineering (CWE2010).##
Parente, A., Gorlé, C., Van Beeck, J., & Benocci, C. (2011). Improved k – epsilon model and wall function formulation for the RANS simulation of ABL flows.
Journal of Wind Engineering & Industrial Aerodynamics, 99, 267–278.
https://doi.org/10.1016/j.jweia.2010.12.017##
Parente, A., Gorlé, C., Benocci, C., & Dynamics, F. (2010, 23-27 May). RANS Simulation of ABL Flows : Implementation of Advanced Boundary Conditions for Mixed Rough and Smooth Surfaces RANS Simulation of ABL Flows : Implementation of Advanced Boundary Conditions for Mixed Rough and Smooth Surfaces. The Fifth International Symposium on Computaional Wind Engineering (CWE 2010).##
Parente, A., Longo, R., Ferrarotti, M., & Milano, P. (2017).
CFD boundary conditions , turbulence models and dispersion study for flows around obstacles. Université Libre de Bruxelles.
https://doi.org/10.35294/ls201701.parente##
Pontiggia, M., Derudi, M., Busini, V., & Rota, R. (2009). Hazardous gas dispersion: A CFD model accounting for atmospheric stability classes.
Journal of Hazardous Materials, 171(1–3), 739–747.
https://doi.org/10.1016/j.jhazmat.2009.06.064##
Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model.
Journal of Wind Engineering and Industrial Aerodynamics, 46–47(C), 145–153.
https://doi.org/10.1016/0167-6105(93)90124-7##
Singh, N. K., & Badodkar, D. N. (2016). Modeling and analysis of hydraulic dashpot for impact free operation in a shut-off rod drive mechanism.
Engineering Science and Technology, an International Journal, 19(3), 1514–1525.
https://doi.org/10.1016/j.jestch.2016.05.005##
Sørensen, N. N., Bechmann, A., Johansen, J., Myllerup, L., Botha, P., Vinther, S., & Nielsen, B. S. (2007). Identification of severe wind conditions using a Reynolds Averaged Navier-Stokes solver.
Journal of Physics: Conference Series, 75(1).
https://doi.org/10.1088/1742-6596/75/1/012053##
Tian, L., Zhao, N., Wang, T., Zhu, W., & Shen, W. (2018). Assessment of in flow boundary conditions for RANS simulations of neutral ABL and wind turbine wake flow.
Journal of Wind Engineering & Industrial Aerodynamics, 179 (September 2017), 215–228.
https://doi.org/10.1016/j.jweia.2018.06.003##
Tian, L., Zhu, C., Zhu, W., & Zhao, N. (2017). Assessment of inflow boundary conditions for RANS simulations of neutral ABL and wind turbine wake flow.
Journal of Wind Engineering and Industrial Aerodynamics, 179(July), 1–26.
https://doi.org/10.20944/preprints201707.0085.v1##
Yan, B. W., Li, Q. S., He, Y. C., & Chan, P. W. (2015). RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-e model.
Journal of Environnement Fluid Mechanics, 16, 1–23.
https://doi.org/10.1007/s10652-015-9408-1##
Yang, Q., Zhou, T., Yan, B., Liu, M., Van Phuc, P., & Shu, Z. (2021). LES study of topographical effects of simplified 3D hills with different slopes on ABL flows considering terrain exposure conditions.
Journal of Wind Engineering and Industrial Aerodynamics, 210, 104513.
https://doi.org/10.1016/j.jweia.2020.104513##
Yang, W., Quan, Y., Jin, X., Tamura, Y., & Gu, M. (2008).
Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise buildings. 96, 2080–2092.
https://doi.org/10.1016/j.jweia.2008.02.014##
Yang, Y., Gu, M., Chen, S., & Jin, X. (2009). New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering.
Journal of Wind Engineering and Industrial Aerodynamics, 97(2), 88–95.
https://doi.org/10.1016/J.JWEIA.2008.12.001##
Yang, Y., Xie, Z., & Gu, M. (2017). Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model.
Wind and Structures, 24(5), 465–480.
https://doi.org/10.12989/was.2017.24.5.465##
Zheng, K. & Tian, W. (2018, January 1–10).
An Experimental Study on the Turbulent Flow Over Two- Dimensional Plateaus. 2018 Wind Energy Symposium.
https://doi.org/10.2514/6.2018-0754.##