Acarlar, M. S., & Smith, C. R. (1987). A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance.
Journal of Fluid Mechanics, 175, 1-41.
https://doi.org/10.1017/S0022112087000272##
Cao, Y., & Tamura, T. (2020). Large-eddy simulation study of Reynolds number effects on the flow around a wall-mounted hemisphere in a boundary layer.
Physics of Fluids, 32(2), 025109.
https://doi.org/10.1063/1.5142371##
Citro, V., Luchini, P., Giannetti, F., & Auteri, F. (2015). Boundary-layer flows past an hemispherical roughness element: DNS, global stability and sensitivity analysis.
Procedia IUTAM, 14, 173-181.
https://doi.org/10.1063/1.4928533##
Dai, R., Wei, A. Y., Luo, K., & Fan, J. R. (2012). Effects of two hemisphere roughness elements in turbulent boundary layer. Journal of Engineering Thermophysics, 33(12), 2104-2107. ##
Deng, S. C., Pan, C., Wang, J. J., & He, G. S. (2018). On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number.
Journal of Fluid Mechanics, 844, 635.
https://doi.org/10.1017/jfm.2018.160##
Dong, S., Huang, Y., Yuan, X., & Lozano-Durán,
A. (2020). The coherent structure of the kinetic
energy transfer in shear turbulence.
Journal of Fluid Mechanics, 892.
https://doi.org/10.1017/jfm.2020.195##
Gao, T. D., Sun, J., Chen, W. Y., Fan, Y., & Zhang, Y. T. (2021). Experimental investigation on the effect of particles on large scale vortices of an isolated hemispherical roughness element.
Physics of Fluids, 33(6), 063308.
https://doi.org/10.1063/5.0050773##
Hamed, A. M., Peterlein, A. M., & Randle, L. V. (2019). Turbulent boundary layer perturbation by two wall-mounted cylindrical roughness elements arranged in tandem: Effects of spacing and height ratio.
Physics of Fluids, 31(6), 065110.
https://doi.org/10.1063/1.5099493##
Jacobs, W. (1938). Flow behind a single roughness element. Ingenieur-Archiv, 7(36), 343-355. ##
Kim, T., Blois, G., Best, J. L., & Christensen, K. T. (2019). PIV measurements of turbulent flow overlying large, cubic- and hexagonally-packed hemisphere arrays.
Journal of Hydraulic Research, 1-21.
https://doi.org/10.1080/00221686.2019.1581671##
Kim, T., & Christensen, K. T. (2018). Flow interactions between streamwise-aligned tandem cylinders in turbulent channel flow.
AIAA Journal, 56(4), 1421-1433.
https://doi.org/10.2514/1.j056186##
Liu, J., Zou, L., Tao, F., Zuo, H. C., & Xu, H. B. (2022). Large eddy simulation of flow past two conical cylinders in tandem arrangement.
Chinese Journal of Theoretical and Applied Mechanics, 54(5), 1-11.
https://doi.org/10.6052/0459-1879-21-653##
Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric Turbulence and Radio Wave Propagation, 166–178. ##
Mochizuki, M. (1961). Smoke observation on boundary layer transition caused by a spherical roughness element.
Journal of the Physical Society of Japan, 16(5), 995-1008.
https://doi.org/10.1143/jpsj.16.995##
Savory, E., & Toy, N. (1988). The separated shear layers associated with hemispherical bodies in turbulent boundary layers.
Journal of Wind Engineering and Industrial Aerodynamics, 28, 291-300.
https://doi.org/10.1016/0167-6105(88)90125-0##
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures.
Quarterly of Applied Mathematics, 45(3), 561-571.
https://doi.org/10.1090/qam/910464##
Spivack, H. M. (1946). Vortex frequency and flow pattern in the wake of two parallel cylinders at varied
spacing normal to an air stream.
Journal of the
Aeronautical Sciences, 13(6): 289-301.
https://doi.org/10.2514/8.11375##
Sumner, D., Wong, S. S. T., Price, S. J., & Paidoussis, M. P. (1999). Fluid behaviour of side-by-side circular cylinders in steady cross-flow.
Journal of
Fluids & Structures, 13(3), 309-338.
https://doi.org/10.1006/jfls.1999.0205##
Waigh, D. R., & Kind, R. J. (1998). Improved aerodynamic characterization of regular three-dimensional roughness.
AIAA Journal, 36(6), 1117-1119.
https://doi.org/10.2514/2.491##
Wassermann, P., & Kloker, M. (2002). Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer.
Journal of Fluid Mechanics, 456, 49-84.
https://doi.org/10.1017/s0022112001007418##
Wu, S., Christensen, K. T., & Pantano, C. (2020). A study of wall shear stress in turbulent channel
flow with hemispherical roughness.
Journal
of Fluid Mechanics, 885.
https://doi.org/10.1017/jfm.2019.968##
Yan, D., Sun, J., Gao, T. D., Chen, P., Cheng, Y. T., & Chen, W. Y. (2021). Experimental study on the effect of solid particles on riblet-plate turbulent boundary layer.
Chinese Journal of Theoretical and Applied Mechanics, 53(8), 2279-2288.
https://doi.org/10.6052/0459-1879-21-149##
Zhang, K., Ma, C., Zhang, J., Zhang, B., & Zhao, B. (2021). Drag reduction characteristics of bionic structure composed of grooves and mucous membrane acting on turbulent boundary layer.
Journal of Applied Fluid Mechanics, 15(1), 283-292.
https://doi.org/10.47176/JAFM.15.01.32901##
Zhang, Y. T., Sun, J., Gao, T. D., & Fan, Y. (2020). Experimental study of the effect of solid particles on hemispheric disturbance wake.
Chinese Journal of Theoretical and Applied Mechanics. 52(03), 728-739.
https://doi.org/10.6052/0459-1879-19-353##