Abbas, A., Razak, N., & Zorkipli, M. (2021). Aeroelastic simulation of stall flutter undergoing high and low amplitude limit cycle oscillations.
Journal of Applied Fluid Mechanics, 14(6), 1679–1689.
https://doi.org/10.47176/JAFM.14.06.32439##
ANSYS, Inc. (2022). ANSYS Fluent Theory Guide (Version 2022 R1). Canonsburg, PA: ANSYS, Inc.##
Beaudet, L. (2014). Etude expérimentale et numérique du décrochage dynamique sur une éolienne à axe vertical de forte solidité. [PhD thesis]. Universite de Poitiers.##
Belkheir, N., Dizene, R., & Khelladi, S. (2012). A numerical simulation of turbulence flow around a blade profile of HAWT rotor in moving pulse.
Journal of Applied Fluid Mechanics, 5(01).
https://doi.org/10.36884/JAFM.5.01.11953##
Carr, L. W., McAlister, K. W., & McCroskey, W. J. (1977). Analysis of the development of dynamic stall based on oscillating airfoil experiments. NASA TN- 8382.##
Chitsomboon, T., & Thamthae, C. (2011). Adjustment of k-ω SST turbulence model for an improved prediction of stalls on wind turbine blades. World renewable energy congress.##
Coleman, D. G., Thomas, F. O., Gordeyev, S., & Corke, T. C. (2019). Parametric modal decomposition of dynamic stall.
American Institute of Aeronautics and Astronautics Journal 57(1), 176–190.
https://doi.org/10.2514/1.J057077##
Ekaterinaris, J. A., & Platzer, M. F. (1998). Computational prediction of airfoil dynamic stall.
Progress in Aerospace Sciences, 33(11-12), 759-846.
https://doi.org/10.1016/S0376-0421##
Geng, F., Kalkman, I., Suiker, A., & Blocken, B. (2018). Sensitivity analysis of airfoil aerodynamics during pitching motion at a Reynolds number of 1.35×105.
Journal of Wind Engineering and Industrial Aerodynamics, 183, 315-332.
https://doi.org/10.1016/j.jweia.2018.11.009##
Gharali, K., Gharaei, E., Soltani, M., & Raahemifar, K. (2018). Reduced frequency effects on combined oscillations, angle of attack and free
stream oscillations, for a wind turbine
blade element.
Renewable Energy, 115, 252-259.
https://doi.org/10.1016/j.renene.2017.08.042##
Greenshields, C., & Weller, H. (2022). Notes on computational fluid dynamics: General principles. Reading, UK: CFD Direct Ltd.##
Gupta, R., & Ansell, P. J. (2018). Investigation of the effects of Reynolds number on the unsteady flow physics of airfoil dynamic stall. 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.##
Hand, B., Kelly, G., & Cashman, A. (2021). Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review.
Renewable and Sustainable Energy Reviews, 139, 110699.
https://doi.org/10.1016/j.rser.2020.110699##
Jasak, H. (2009). Dynamic mesh handling in OpenFOAM. The AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition.##
Kaptein, S. J., Duran-Matute, M., Roman, F., Armenio, V., & Clercx, H. J. (2020). Existence and properties of the logarithmic layer in oscillating flows.
Journal of Hydraulic Research, 58(4), 687–700.
https://doi.org/10.1080/00221686.2019.1661293##
Ko, S., & McCroskey, W. J. (1997). Computations of unsteady separating flows over an oscillating
airfoil.
American Institute of Aeronautics and
Astronautics Journal. 35(7), 1235– 1238.
https://doi.org/10.2514/2.226##
Lee, T., & Su, Y. Y. (2015). Surface pressures developed on an airfoil undergoing heaving and pitching motion.
Journal of Fluids Engineering, 137(5).
https://doi.org/10.1115/1.4029443##
Leishman, G. J. (2006). Principles of helicopter aerodynamics with CD extra. Cambridge university press.##
Li, X., Feng, L. H., & Li, Z. Y. (2019). Flow mechanism for the effect of pivot point on the aerodynamic characteristics of a pitching airfoil and its manipulation.
Physics of Fluids, 31(8), 087108.
https://doi.org/10.1063/1.5114833##
McCroskey, W. J. (1981). The phenomenon of dynamic stall. NASA-A-National Aeronautics and Space Administration Moffett Field Ca Ames Research Center 8464.##
McCroskey, W. J., McAlister, K. W., Carr, L. W., Pucci, S. L., Lambert, O., & Indergrand, R. F. (1981). Dynamic stall on advanced airfoil sections.
Journal of the American Helicopter Society, 26(3), 40-50.
https://doi.org/10.4050/JAHS.26.3.40##
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
American Institute of Aeronautics and Astronautics Journal, 32(8), 1598-1605.
https://doi.org/10.2514/3.12149##
Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625–632.##
OpenCFD. (2022). OpenFOAM version 2112 user guide. Retrieved from https://www.openfoam.com##
Petot, D. (1989). Differential equation modeling of dynamic stall. La Recherche Aerospatiale (English Edition), 5, 59–72.##
Piziali, R. A. (1994). 2-d and 3-d oscillating wing aerodynamics for a range of angles of attack including stall. Technical Report, NASA Ames Research Center, Moffett Field, CA, NASA Tech Memo 4632, USAATCOM Technical Report 94-A-011; September 1994.##
Rhee, M. (2007). Evaluation of grid convergence and turbulence model constant changes for the airfoil flow simulation. The AIAA Aerospace Sciences Meeting and Exhibit.##
Rhee, M. J. (2002). A study of dynamic stall vortex development using two-dimensional data from the AFDD oscillating wing experiment. Ames Research Center, 7, 2002–21185.##
Sangwan, J., Sengupta, T. K., & Suchandra, P. (2017). Investigation of compressibility effects on dynamic stall of pitching airfoil
Physics of Fluids, 29(7), 076104.
https://doi.org/10.1063/1.4995457##
Sharma, A., & Visbal, M. (2019). Numerical investigation of the effect of airfoil thickness on onset of dynamic stall.
Journal of Fluid Mechanics, 870, 870-900.
https://doi.org/10.1017/jfm.2019.235##
Smith, T. A. & Ventikos, Y. (2019). Boundary layer transition over a foil using direct numerical simulation and large eddy simulation.
Physics of Fluids, 31(12), 124102.
https://doi.org/10.1063/1.5126663##
Spalart, P. R., & Rumsey, C. L. (2007). Effective inflow conditions for turbulence models in aerodynamic calculations.
American Institute of Aeronautics and Astronautics Journal, 45(10), 2544-2553.
https://doi.org/10.2514/1.29373##
Spalart, P., & Allmaras, S. (1992). A oneequation turbulence model for aerodynamic flows. In 30th aerospace sciences meeting and exhibit (p. 439). https://doi.org/10.2514/6.1992-439##
Spentzos, A., Barakos, G., Badcock, K., Richards, B., Wernert, P., Schreck, S., & Raffel, M. (2005). Investigation of three-dimensional dynamic stall using computational fluid dynamics.
Aeronautics and Astronautics Journal, 43(5), 1023-1033.
https://doi.org/10.2514/1.8830##
Storms, B. L., Ross, J. C., Heineck, J. T., Walker, S. M., Driver, D. M., Zilliac, G. G., & Bencze, D. P. (2001). An experimental study of the ground transportation system (GTS) model in the NASA Ames 7-by 10-ft wind tunnel.##
Surekha, RS, D., Khandelwal, A., & Rajasekar, R. (2019). Investigation of flow field in deep dynamic stall over an oscillating NACA 0012 airfoil.
Journal of Applied Fluid Mechanics, 12(3), 857–863.
https://doi.org/10.29252/JAFM.12.03.29532##
Thakor, M., Kumar, G., Das, D., & De, A. (2020). Investigation of asymmetrically pitching airfoil at high reduced frequency.
Physics of Fluids, 32(5), 053607.
https://doi.org/10.1063/5.0006659##
Visbal, M. R., & Benton, S. I. (2018). Exploration of high-frequency control of dynamic stall using large-eddy simulations.
Aeronautics and Astronautics Journal, 56(8), 2974-2991.
https://doi.org/10.2514/1.J056720##
Visbal, M. R., & Garmann, D. J. (2018). Analysis of dynamic stall on a pitching airfoil using
high-fidelity large-eddy simulations.
Aeronautics
and Astronautics Journal, 56(1), 46-63.
https://doi.org/10.2514/1.J056108##
Visbal, M. R., & Shang, J. S. (1989). Investigation of the flow structure around a rapidly pitching airfoil
Aeronautics and Astronautics Journal, 27(8), 1044-1051.
https://doi.org/10.2514/3.10219##
Wang, R., & Xiao, Z. (2020). Transition effects on flow characteristics around a static two-dimensional airfoil
. Physics of Fluids, 32(3), 035113.
https://doi.org/10.1063/1.5144860##
Wang, S., Ingham, D. B., Ma, L., Pourkashanian, M., & Tao, Z. (2010). Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils.
Computers & Fluids, 39(9), 1529–1541.
https://doi.org/10.1016/j.co##
Wang, S., Ingham, D. B., Ma, L., Pourkashanian, M., & Tao, Z. (2012). Turbulence modeling of deep dynamic stall at relatively low Reynolds number.
Journal of Fluids and Structures, 33, 191-209.
https://doi.org/10.1016/j.jfluidstructs.2012.04.011##