Andayesh, M., Shahidian, A., & Ghassemi, M. (2020). Numerical investigation of renal artery hemodynamics based on the physiological response to renal artery stenosis.
Biocybernetics and Biomedical Engineering, 40(4), 1458–1468.
http://dx.doi.org/10.1016/j.bbe.2020.08.006##
Azar, D., Torres, W. M., Davis, L. A., Shaw, T., Eberth, J. F., Kolachalama, V. B., Lessner, S. M., & Shazly, T. (2019). Geometric determinants of local hemodynamics in severe carotid artery stenosis.
Computers in Biology and Medicine, 114, 103436.
https://doi.org/10.1016%2Fj.compbiomed.2019.103436##
Carneiro, F., Ribeiro, V. G., Teixeira, J., & Teixeira, S. (2008). Numerical study of blood fluid rheology in the abdominal aorta.
Design & Nature IV: Comparing Design in Nature with Science and Engineering, 4, 169.
https://doi.org/ 10.2495/DN080181##
Carvalho, V., Carneiro, F., Ferreira, A. C., Gama, V., Teixeira, J. C., & Teixeira, S. (2021). Numerical study of the unsteady flow in simplified and realistic iliac bifurcation models.
Fluids, 6(8), 284.
https://doi.org/10.3390/fluids6080284##
Cecchi, E., Giglioli, C., Valente, S., Lazzeri, C., Gensini, G. F., Abbate, R., & Mannini, L. (2011). Role of hemodynamic shear stress in cardiovascular disease.
Atherosclerosis, 214(2), 249–256.
https://doi.org/10.1016/j.atherosclerosis.2010.09.008##
Duncker, D. J., Koller, A., Merkus, D., & Canty Jr, J. M. (2015). Regulation of coronary blood flow in health and ischemic heart disease.
Progress in Cardiovascular Diseases, 57(5), 409–422.
https://doi.org/10.1016/j.pcad.2014.12.002##
Eid, M. A., Mehta, K., Barnes, J. A., Wanken, Z., Columbo, J. A., Goodney, P., & Mayo-Smith, M. (2021). Global burden of disease of peripheral artery disease.
Journal of Vascular Surgery, 74(3), e255.
https://doi.org/10.1016/j.jvs.2022.12.015##
Gallo, D., Steinman, D. A., Bijari, P. B., & Morbiducci, U. (2012). Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear.
Journal of biomechanics, 45(14), 2398–2404.
https://doi.org/10.1016/j.jbiomech.2012.07.007##
Gong, X., Liang, Z., Wang, Y., Zhang, C., Xie, S., & Fan, Y. (2021). Comparative study on hemodynamic environments around patient-specific carotid atherosclerotic plaques with different symmetrical features.
Medicine in Novel Technology and Devices, 11, 100079.
https://doi.org/10.1016/j.medntd.2021.100079##
Hartman, E. M., De Nisco, G., Gijsen, F. J., Korteland, S. A., Van der Steen, A. F., Daemen, J., & Wentzel, J. J. (2021). The definition of low wall shear stress and its effect on plaque progression estimation in human coronary arteries.
Scientific Reports, 11(1), 1–11.
https://doi.org/10.1038/s41598-021-01232-3##
Kashyap, V., Arora, B., & Bhattacharjee, S. (2020). A computational study of branch-wise curvature in idealized coronary artery bifurcations.
Applications in Engineering Science, 4, 100027.
https://doi.org/10.1016/j.apples.2020.100027##
Khader, S. M. A., Azriff, A., Johny, C., Pai, R., Zuber, M., Ahmad, K. A., & Ahmad, Z. (2018). Haemodynamics behaviour in normal and stenosed renal artery using computational fluid dynamics.
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 51(1), 80–90.
##
Kim, S. J., Schneider, D. J., Feldmann, E., & Liebeskind, D. S. (2022). Intracranial atherosclerosis: Review of imaging features and advances in diagnostics.
International Journal of Stroke, 17474930211066427.
https://doi.org/10.1177/17474930211066427##
Kim, W. W., Menon, S., Kim, W. W., & Menon, S. (1997).
Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows. 35th Aerospace Sciences Meeting and Exhibit, 210.
https://doi.org/10.2514/6.1997-210##
Leong, D. P., Joseph, P. G., McKee, M., Anand, S. S., Teo, K. K., Schwalm, J. D., & Yusuf, S. (2017). Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease.
Circulation research, 121(6), 695–710.
https://doi.org/10.1161/CIRCRESAHA.117.311849##
Mohamed, A., Mattsson, G., & Magnusson, P. (2021). A case report of acute leriche syndrome: aortoiliac occlusive disease due to embolization from left ventricular thrombus caused by myocarditis.
BMC Cardiovascular Disorders, 21(1), 1–5.
https://doi.org/10.1186/s12872-021-02031-4##
Wilson, N. M., Ortiz, A. K., & Johnson, A. B. (2013). The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results.
Journal of medical devices 7(4), 040923. (Dec 05,2013).
https://doi.org/10.1115/1.4025983.##
Qin, S., Chen, R., Wu, B., Shiu, W. S., & Cai, X. C. (2021). Numerical simulation of blood flows in patient-specific abdominal aorta with primary organs.
Biomechanics and Modeling in Mechanobiology, 20(3), 909–924.
https://doi.org/10.1007/s10237-021-01419-7##
Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C.,Beaton, A. Z., Benjamin, E. J., Benziger, C. P., et al. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the gbd 2019 study.
Journal of the American College of Cardiology,76(25), 2982–3021.
https://www.jacc.org/doi/10.1016/j.jacc.2020.11.010##
Sinnott, M., Cleary, P. W., & Prakash, M. (2006).
An Investigation of Pulsatile Blood Flow in a Bifurcation Artery Using a Grid-Free Method. Proc. Fifth International Conference on CFD in the Process Industries.
##
Versteeg, H. K., & Malalasekera, W. (2007).
An introduction to computational fluid dynamics: the finite volume method. Pearson Education.
##
Wooten, C., Hayat, M., Du Plessis, M., Cesmebasi, A., Koesterer, M., Daly, K. P., Matusz, P., Tubbs, R. S., & Loukas, M. (2014). Anatomical significance in aortoiliac occlusive disease.
Clinical Anatomy, 27(8),1264–1274.
https://doi.org/10.1002/ca.22444##
Zhao, Y., Ping, J., Yu, X., Wu, R., Sun, C., & Zhang, M. (2019). Fractional flow reserve-based 4d hemodynamic simulation of time-resolved blood flow in left anterior descending coronary artery.
Clinical Biomechanics, 70, 164–169.
https://doi.org/10.1016/j.clinbiomech.2019.09.003##
Zhu, C., Seo, J. H., & Mittal, R. (2018). Computational modelling and analysis of haemodynamics in a simple model of aortic stenosis.
Journal of Fluid Mechanics, 851, 23–49.
https://doi.org/10.1017/jfm.2018.463##