Acanal, L., Loukogeorgaki, E., Yagci, O., Kirca, V. S. O., & Akgul, A. (2013). Performance of an inclined thin plate in wave attenuation.
Journal of Coastal Research, 65 (10065), 141–146
https://doi.org/10.2112/SI65-025.1xx
Baykal, C., Sumer, B. M., Fuhrman, D. R., Jacobsen, N. G., & Fredsøe, J. (2015). Numerical investigation of flow and scour around a vertical circular cylinder.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2033), 20140104.
https://doi.org/10.1098/rsta.2014.0104.##
Chang, K., & Constantinescu, G. (2015). Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders.
Journal of Fluid Mechanics, 776, 161–199.
https://doi.org/10.1017/jfm.2015.321##
Chiatto, M., Shang, J. K., De Luca, L., & Grasso, F., (2021). Insights into low reynolds flow past finite curved cylinders.
Physics of Fluids, 33(3).
https://doi.org/10.1063/5.0043222.##
Euler, T., Zemke, J., Rodrigues, S., & Herget, J. (2014). Influence of inclination and permeability of solitary woody riparian plants on local hydraulic and sedimentary processes.
Hydrological Processes, 28(3), 1358–1371.
https://doi.org/10.1002/hyp.9655##
Flowscience (2019). Flow-3D User Manual.##
Istiarto, I. (2001). Flow Around a Cylinder in a Scoured Channel Bed. Gadjah Mada University.##
Jiang, F., Pettersen, B., Andersson, H. I., Kim, J., & Kim, S. (2018). Wake behind a concave curved cylinder.
Physical Review Fluids, 3(9), 94804.
https://doi.org/10.1103/PhysRevFluids.3.094804.##
Jiang, F., Pettersen, B., & Andersson, H. I. (2019). Turbulent wake behind a concave curved cylinder.
Journal of Fluid Mechanics, 878, 663–99.
https://doi.org/10.1017/jfm.2019.648.##
Kazemi, A. (2017). Hydrodynamics of mangrove root-type models (Issue December). Florida Atlantic University.##
Keshavarzi, A., Shrestha, C., Ranjbar Zahedani, M., Ball, J., & Khabbaz, H. (2017). Experimental study of flow structure around two in-line bridge piers.
Proceedings of the Institution of Civil Engineers - Water Management, 171, 1–17.
https://doi.org/10.1680/jwama.16.00104##
Larsen, B. E., Fuhrman, D. R., & Sumer, B. M. (2016). Simulation of wave-plus-current scour beneath submarine pipelines.
Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(5), 04016003.
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000338##
Majd, F. S., Yagci, O., Kirca, V. S. O., Kitsikoudis, V., & Lentsiou, E. N. (2016). Flow and turbulence around an inclined pile. Twenty-Sixth (2016) International Ocean and Polar Engineering Conference.##
Moreau, J. J. (1961). Constantes d’un îlot tourbillonnaire en fluide parfait barotrope. Comptes Rendus Hebdomadaires Des Séances de l’Académie Des Sciences, 252(19), 2810.##
Munson, B. R., Okiishi, T. H., Young, D. F. (2002) Fundamentals of Fluid Mechanics. 4th Edition, R. R. Donnelley & Sons, Chicago.##
Rajani, B.N., Kandasamy, A., & Majumdar, S. (2012). On the reliability of eddy viscosity based turbulence models in predicting turbulent flow past a
circular cylinder using URANS approach.
Journal of Applied Fluid Mechanics, 5.
http://doi.org/10.36884/jafm.5.01.11959.##
Roulund, A., Sumer, B. M., Fredsøe, J., & Michelsen, J. (2005a). Numerical and experimental investigation of flow and scour around a circular pile.
Journal of Fluid Mechanics, 534, 351–401.
https://doi.org/10.1017/S0022112005004507##
Roulund, A., Sumer, B. M., Fredsøe, J., & Michelsen, J. (2005b). Numerical and experimental investigation of flow and scour around a circular pile.
Journal of Fluid Mechanics, 534, 351–401.
https://doi.org/10.1017/S0022112005004507.##
Shang, J. K., Stone, H. A., & Smits, A. J. (2018). Flow past finite cylinders of constant curvature.
Journal of Fluid Mechanics, 837, 896–915.
https://doi.org/10.1017/jfm.2017.884.##
Sumer, B. M., & Fredsøe, J. (2006).
Hydrodynamics Around Cylindrical Structures. Advanced Series on Ocean Engineering (Vol. 26). WORLD SCIENTIFIC.
https://doi.org/10.1142/6248##
Surry, J., & Surry, D. (1967). The Effect of Inclination on the Strouhal Number and Other Wake Properties of Circular Cylinders at Subcritical Reynolds Numbers. University of Toronto. Institute for Aerospace Studies.##
Wang, S., Yang, S., He, Z., Li, L., & Xia, Y. (2020). Effect of inclination angles on the local scour around a submerged cylinder.
Water (Switzerland), 12(10), 1–20.
https://doi.org/10.3390/w12102687##
Yagci, O., Celik, M. F., Kitsikoudis, V., Ozgur Kirca, V. S., Hodoglu, C., Valyrakis, M., Duran, Z., & Kaya, S. (2016). Scour patterns around isolated vegetation elements.
Advances in Water Resources, 97, 251–265.
https://doi.org/10.1016/j.advwatres.2016.10.002##
Yagci, O., Kirca, V. S. O., & Acanal, L. (2014). Wave attenuation and flow kinematics of an inclined thin plate acting as an alternative coastal protection structure.
Applied Ocean Research, 48, 214–226.
https://doi.org/10.1016/j.apor.2014.09.003##
Yagci, O., Yildirim, I., Celik, M. F., Kitsikoudis, V., Duran, Z., & Kirca, V. S. O. (2017). Clear water scour around a finite array of cylinders.
Applied Ocean Research, 68, 114–129.
https://doi.org/10.1016/j.apor.2017.08.014##
Zimmerman, W. B. (1996). Fluctuations in passive tracers due to mixing by coherent structures in isotropic, homogeneous, helical turbulence. IChemE Symposium Series, 213–224.##