Study on the Erosion Characteristics of Non-spherical Particles in Liquid-solid Two-phase Flow

Document Type : Regular Article

Authors

1 Institute of Flow-Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

2 Hangzhou Special Equipment Inspection and Research Institute, Hangzhou 310051, China

Abstract

Elbow erosion, defined as wall thinning due to the continuous interactions between solid particles and surface, is a common phenomenon in catalyst addition/withdrawal pipeline systems used in residual oil hydrogenation units. This form of erosion can seriously affect the reliable pipeline operation. The present paper describes the construction of realistic cylindrical catalyst particles using the multi-sphere clump method and computational fluid dynamics/discrete element model simulations to study the erosion of pipe walls under different inlet velocities and particle aspect ratios. An optical shooting experiment is carried out to ensure the accuracy of the calculation method, and the model performance is compared using several existing drag models. The results show that the drag model of Haider & Levenspiel is more accurate than the others in revealing the actual cylindrical particle flow. A higher inlet velocity is observed to increase the kinetic energy of the particles and affect their spatial distribution. Specifically, when the Stokes number is greater than 113.7, the position of the maximum erosion rate shifts from the elbow’s outer wall to the inner wall. Cumulative contact energy is introduced to quantify two different types of particle-wall contacts. With a growing particle aspect ratio, the proportion of tangential energy gradually increases, which indicates that sliding is the main contact mode. The results presented in this paper provide a reference for engineering erosion calculations. 

Keywords

Main Subjects


Adedeji, O. E., & Duarte, C. R. (2020). Prediction of thickness loss in a standard 90° elbow using erosion-coupled dynamic mesh. Wear, 460-461(2020), 203400. https://doi.org/10.1016/j.wear.2020.203400##
Ahlert, K. (1994). Effect of particle impingement angle and surface wetting on solid particle erosion of aisi 1018 steel [MS Thesis]. University of Tulsa, Oklahoma, United States.##
Ali, H. M. (2022). Phase change materials based thermal energy storage for solar energy systems. Journal of Building Engineering, 56(2022), 104731. https://doi.org/10.1016/j.jobe.2022.104731##
Archard, J. F. (1953). Contact and rubbing of flat surfaces. Journal of Applied Physics, 24(8), 981-988. https://doi.org/10.1063/1.1721448##
Bitter, J. G. A. (1962). A study of erosion phenomena. Wear, 6, 5-21. https://doi.org/10.1016/0043-1648(63)90003-6##
Buettner, K. E., Curtis, J. S., & Sarkar, A. (2021). Fluid–particle drag force measurements from particle-resolved CFD simulations of flow past random arrays of ellipsoidal particles. Chemical Engineering Science, 235, 116469. https://doi.org/10.1016/j.ces.2021.116469##
Chen, G., Liu, Y., & Lodewijks, G. (2017). Experimental research on the determination of the coefficient of sliding wear under iron ore handling conditions. Tribology in Industry, 39(3), 378-390. https://doi.org/10.24874/ti.2017.39.03.13##
Chen, J., Wang, Y., & Li, X. (2015). Erosion prediction of liquid–particle two-phase flow in pipeline elbows via CFD–DEM coupling method. Powder Technology, 275, 182-187. https://doi.org/10.1016/j.powtec.2014.12.057##
Chen, L., Sun, Z., & Ma, H. (2022). Energy loss caused by the elbow of stiff shotcrete pneumatic conveying based on response surface method and CFD-DEM. Powder Technology, 408, 117726. https://doi.org/10.1016/j.powtec.2022.117726##
Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47-65. https://doi.org/10.1680/GEOT.1979.29.1.47##
Deng, T., Bingley, M. S., & Bradley, M. S. A. (2004). The influence of particle rotation on the solid particle erosion rate of metals. Wear, 256(11-12), 1037-1049. https://doi.org/10.1016/S0043-1648(03)00536-2##
Di Felice, R. (1993). The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 20, 153-159. https://doi.org/10.1016/0301-9322(94)90011-6##
Finnie, I. (1960). Erosion of surfaces by solid particles. Wear, 3, 87-103. https://doi.org/10.1016/0043-1648(60)90055-7##
Finnie, I., & McFadden, D. H. (1979). On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence. Wear, 48, 181-190.   https://doi.org/10.1520/STP35794S##
Ganser, G. H. (1993). A rational approach to drag prediction of spherical and nonspherical particles. Powder Technology, 77, 143-152. https://doi.org/10.1016/0032-5910(93)80051-B##
Gao, S. Q., Jin, H. Z., & Ou, G. F. (2022). Erosion behaviors of gas–solid flow on an assignment plate using CFD–DEM. Journal of Applied Fluid Mechanics, 15(5), 1609-1620. https://doi.org/10.47176/JAFM.15.05.33598##
Haider, A., & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58, 63-70. https://doi.org/10.1016/0032-5910(89)80008-7##
Hertz, H. (1882). On the contact of elastic solids. Journal fur die Reine und Angewandte Mathematik, 1882(92), 156-171.##
Jing, J., Xiao, F., & Yang, L. (2018). Measurements of velocity field and diameter distribution of particles in multiphase flow based on trajectory imaging. Flow Measurement and Instrumentation, 59, 103-113. https://doi.org/10.1016/j.flowmeasinst.2017.12.005##
Liu, X. F., Zhou, J. F., & Gao, S. Q. (2022). Study on the impact wear characteristics of catalyst particles at 90° elbow via CFD-DEM coupling method. Journal of Applied Fluid Mechanics, 15(1), 221-230. https://doi.org/10.47176/JAFM.15.01.32536##
Lu, G., Third, J. R., & Muller, C. R. (2012). Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chemical Engineering Science, 78, 226-235. https://doi.org/10.1016/j.ces.2012.05.041##
Mindlin, R. D., & Deresiewicz, H. (1953). Elastic Spheres in Contact under Varying Oblique Force. Journal of Applied Mechanics, 20(1), 327-344. https://doi.org/10.1007/978-1-4613-8865-4_35##
Mindlin, R. D. (1949) Compliance of elastic bodies in contact. Journal of Applied Mechanics, 16 259-268. https://doi.org/10.1007/978-1-4613-8865-4_24##
Oka, Y. I., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact. Wear, 259(1-6), 95-109. https://doi.org/10.1016/j.wear.2005.01.039##
Ou, G., Cao, X., & Wang, C. (2022). CFD-DEM-based numerical simulation of erosion characteristic of multistage pressure relief string regulating valve. Journal of Applied Fluid Mechanics, 15(4), 999-1015. https://doi.org/10.47176/JAFM.15.04.1022##
Rubinow, S. I., & Keller, J. B. (1961). The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics, 11(03), 447. https://doi.org/10.1017/S0022112061000640##
Sajjad, U., Hussain, I., & Hamid, K. (2022). Liquid-to-vapor phase change heat transfer evaluation and parameter sensitivity analysis of nanoporous surface coatings. International Journal of Heat and Mass Transfer, 194(2022), 123088. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123088##
Singh, V., Kumar, S., & Mohapatra, S. K. (2019). Modeling of erosion wear of sand water slurry flow through pipe bend using CFD. Journal of Applied Fluid Mechanics, 12(3), 679-687. https://doi.org/10.29252/jafm.12.03.29199##
Tsuji, T., Yabumoto, K., & Tanaka, T. (2008). Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation. Powder Technology, 184(2), 132-140. https://doi.org/10.1016/j.powtec.2007.11.042##
Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 71(3), 239-250. 10.1016/0032-5910(92)88030-L##
Vollmari, K., Jasevičius, R., & Kruggel-Emden, H. (2016). Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technology, 291, 506-521. https://doi.org/10.1016/j.powtec.2015.11.045##
Wang, J., Zhang, M., & Feng, L. (2020). The behaviors of particle-wall collision for non-spherical particles: Experimental investigation. Powder Technology, 363, 187-194. https://doi.org/10.1016/j.powtec.2015.11.045##
Wang, K., Li, X., & Wang, Y. (2017). Numerical investigation of the erosion behavior in elbows of petroleum pipelines. Powder Technology, 314, 490-499. https://doi.org/10.1016/j.powtec.2016.12.083##
Wang, Q., Huang, Q., & Wang, N. (2021). An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series. Engineering Failure Analysis, 130, 105779. https://doi.org/10.1016/j.engfailanal.2021.105779##
Yu, A. B. & Xu, B. H. (2003). Particle-scale modelling of gas-solid flow in fluidization. Journal of Chemical Technology & Biotechnology, 78(2-3), 111-121. https://doi.org/10.1002/jctb.788##
Zeng, D. Z., Zhang, E. B., & Ding, Y. Y. (2018). Investigation of erosion behaviors of sulfur-particle-laden gas flow in an elbow via a CFD-DEM coupling method. Powder Technology, 329, 115-128. https://doi.org/10.1016/j.powtec.2018.01.056##
Zhou, J. W., Liu, Y., & Liu, S. Y. (2017). Effects of particle shape and swirling intensity on elbow erosion in dilute-phase pneumatic conveying. Wear, 380-381, 66-67. https://doi.org/10.1016/j.wear.2017.03.009##
Zolfagharnasab, M. H., Salimi, M., & Zolfagharnasab, H. (2021). A novel numerical investigation of erosion wear over various 90-degree elbow duct sections. Powder Technology, 380, 1-17. https://doi.org/10.1016/j.powtec.2020.11.059##