Alan, G. E., Reyes, O., Luis, A. B., Omar, L. B., Octavio, G. S., & Patricia, Z. R. (2019). Conceptual design of an unmanned fixed-wing aerial vehicle based on alternative energy.
International Journal of Aerospace Engineering, 1(1), 1-10.
https://doi.org/10.1155/2019/8104927##
Ashleigh, T., Immanuel, N. J., Christiaan, M., Dmitri, B., & Rupert, G. (2020). A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements.
Heliyon, 6(11), 1-9.
https://doi.org/10.1016/j.heliyon.2020.e05285##
Bharath, G., Hikaru, O., Inderjit, C., & Justin, W. (2017). Basic understanding of airfoil characteristics at low reynolds numbers.
Journal of Aircraft, 55(1),1-23.
https://doi.org/10.2514/1.C034415##
Chih, W. C., Der, M. M., Jaw, K. S., & Jie, R. S. (2010). Optimal sizing and cruise speed determination for solar powered airplane.
Journal of Aircraft, 47(2), 622-629.
https://doi.org/10.2514/1.45908##
Daniel, P. (2012). Aircraft Design - A conceptual Approach. sixth edition, American Institute of Aeronautics and Astranautics incorporated, Virginia.##
Guo, F., Huang, C. & Lei, J. (2013). Numerical study of separation on the trailing edge of a symmetrical airfoil at a low Reynolds number.
Chinese Journal of Aeronautics, 26(4), 918-925.
https://doi.org/10.1016/j.cja.2013.06.005##
Jin, W., & Lee, Y. G. (2014). Computational analysis of the aerodynamic performance of a long endurance UAV.
International Journal of Aeronautical and Space sciences, 15(4), 374-382.
https://doi.org/10.5139/IJASS.2014.15.4.374##
John, D. A. (2010). Fundamentals of Aerodynamics. fifth edition, McGraw-Hill Education Publishing Ltd, United States.##
Morgado, J., Pascoa, J. C., Silvestre, M .A. R., & Vizinho, R. (2016). XFOIL vs.CFD performance predictions for high lift low reynolds number airfoils.
Aerospace Science and Technology, 52(1), 207-214.
https://doi.org/10.1016/j.ast.2016.02.031##
Nelson, J. P. B., Julio, E. P. V., John, J. V. R., Pedro, D. B., & Hernan, D. C. (2016).Design and manufacture of a solar powered unmanned aerial vehicle for civilian surveillance Missions.
Journal of Aerospace Technology and Management, 8(4), 385–396.
http://dx.doi.org/10.5028/jatm.v8i4.678##
Parvathy, R., & Howard, S. (2018). Development of design methodology for a Small solar-powered unmanned aerial vehicle.
International Journal of Aerospace Engineering, 2018, 1-10.
https://doi.org/10.1155/2018/2820717##
Rowayne, E. M., Mehdi, N., & Amanda, J. H. (2020). Solar powered unmanned aerial vehicle: A numerical approach in improving solar cell performance.
International Journal of Aerodynamics, 7(1),61-82.
https://doi.org/10.1504/IJAD.2020.107162##
Sivaraj, G., Paramasivam, K., & Suganya, G. (2018). Reduction of aerodynamic drag force for reducing fuel consumption in road vehicle using basebleed,
Journal of Applied fluid mechanics, 11(6),1489-1495.
http://dx.doi.org/10.1088/1742-6596/1888/1/012016##
Suraj, G., Shivam, S., & Ankur, D. (2020). Review of solar unmanned aerial vehicles(UAV) and its sustainability.
Engineering Technology and Research, 2(1),001-006.
https://doi.org/10.15413/etr.2020.108##
Xinhua, L., Kaijun, S., & Feng, L. (2020). General optimal design of solar powered unmanned aerial vehicle for priority considering propulsion system.
Chinese Journal of Aeronautics, 33(8), 2176-2188.
https://doi.org/10.1016/j.cja.2020.04.009##
Yauhei, C., Chunleung, H., Yoonjo, L., & Boyang, L. (2021) Development of a solar powered unmanned aerial vehicle for extended flight endurance.
Drones, 5(2),1-19.
https://doi.org/10.3390/drones5020044##