Investigation of Flow Boiling in Micro-Channels: Heat Transfer, Pressure Drop and Evaluation of Existing Correlations

Document Type : Regular Article

Authors

1 School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

2 Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China

Abstract

In this study, the flow boiling heat transfer and pressure drop characteristics of refrigerant R134a in micro-channels were experimentally investigated. The tests were performed in circular horizontal micro-channels with inner diameters of 0.5 mm and 1 mm and a heating length of 300 mm. The mass velocities varied from 500 kg/m2s to 2500 kg/m2s, and the heat fluxes varied from 15 kW/m2 to 147 kW/m2. The heat transfer coefficient (HTC) and frictional pressure drop (FPD) were measured and discussed in detail. According to the results, HTC was significantly affected by heat flux, whereas it was independent of mass velocity. Nucleate boiling was the dominant heat transfer mechanism for R134a flow boiling in the micro-channels. In comparison to the 1 mm channel, the 0.5 mm channel shows better performance in heat transfer, with a maximum increase of approximately 22 %. In addition, FPD increased with increasing mass velocity and decreasing channel diameter. Finally, several existing correlations for HTC and FPD were evaluated by comparing them with the experimental values. Tran’s correlation (1996) presented a better agreement in terms of the average HTC, while for the FPD, the model of Kim and Mudawar (2013b) showed good prediction accuracy.

Keywords

Main Subjects


Azzolin, M., Bortolin, S., & Del Col, D. (2016). Flow boiling heat transfer of a zeotropic binary mixture of new refrigerants inside a single microchannel. International Journal of Thermal Sciences, 110, 83-95. https://doi.org/10.1016/j.ijthermalsci.2016.06.026##
Bertsch, S. S., Groll, E. A., & Garimella, S. V. (2009a). Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels. International Journal of Multiphase Flow, 35(2), 142-154. https://doi.org/10.1016/j.ijmultiphaseflow.2008.10.004##
Bertsch, S. S., Groll, E. A., & Garimella, S. V. (2009b). A composite heat transfer correlation for saturated flow boiling in small channels. International Journal of Heat and Mass Transfer, 52, 2110-2118. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.022##
Chen, C. A., Li, K. W., Lin, T. F., Li, W. K., & Yan, W. M. (2021). Study on heat transfer and bubble behavior inside horizontal annuli: Experimental comparison of R-134a, R–407C, and R-410A subcooled flow boiling. Case Studies in Thermal Engineering, 24, 100875. https://doi.org/10.1016/j.csite.2021.100875##
Choi, K. I., A.S. Pamitran and J.-T. Oh (2007). Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels. International Journal of Refrigeration, 30, 767– 777. https://doi.org/10.1016/j.ijrefrig.2006.12.006##
Choi, K. I., Pamitran, A. S., Oh, C. Y., & Oh, J, T. (2008). Two-phase pressure drop of R-410A in horizontal smooth minichannels. International Journal of Refrigeration 31(1), 119–129. https://doi.org/10.1016/j.ijrefrig.2007.06.006##
Dang, C., Jia, L., Peng, Q., Yin, L. F., & Qi, Z. L. (2020). Comparative study of flow boiling heat transfer and pressure drop of HFE-7000 in continuous and segmented microchannels. International Journal of Heat and Mass Transfer, 148, 119038. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119038##
Dorao, C. A., Drewes, S., & Fernandino, M. (2018). Can the heat transfer coefficients for single-phase flow and for convective flow boiling be equivalent? Applied Physics Letters, 112, 064101. https://doi.org/10.1063/1.5018659##
Fayyadh, E. M., Mahmoud, M. M., Sefiane, K., & Karayiannis, T. G. (2017). Flow boiling heat transfer of R134a in multi microchannels. International Journal of Heat and Mass Transfer, 110, 422-436. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.057##
Feng, L., Zhong, K., Xiao, X., Jia, H., & Luo, X. (2022). Experimental investigation on flow boiling characteristics of HFO-1234yf in a 0.5 mm microchannel. International Journal of Refrigeration, 136, 71-81. https://doi.org/10.1016/j.ijrefrig.2022.01.015##
Friedel, L. (1979). Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. Proceedings of European Two-Phase Flow Group Meeting Ispra, Italy.##
Gan. C. J., Wang, W., & Zhang, L. (1998). Influence of tube's diameter on boiling heat transfer performance in small diameter tubes. Journal of Thermal Science, 7, 49-53. https://doi.org/10.1007/s11630-998-0025-x##
Gungor, K. E., & Winterton, R. H. S. (1986). A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 29(3), 351-358. https://doi.org/10.1016/0017-9310(86)90205-X##
Huang, H., Borhani, N., & Thome, J. R. (2016) Experimental investigation on flow boiling pressure drop and heat transfer of R1233zd (E) in a multi-microchannel evaporator. International Journal of Heat and Mass Transfer, 98, 596-610. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.051##
Hwang, Y. W., & Kim, M. S. (2006). The pressure drop in microtubes and the correlation development. International Journal of Heat and Mass Transfer, 49(11-12), 1804-1812. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.040##
Kaew-On, J., Sakamatapan, K., & Wongwises, S. (2011). Flow boiling heat transfer of R134a in the multiport minichannel heat exchangers. Experimental Thermal and Fluid Science, 35(2), 364-374. https://doi.org/10.1016/j.expthermflusci.2010.10.007##
Kanizawa, F. T., Tibiriçá, C. B., & Ribatski, G. (2016). Heat transfer during convective boiling inside microchannels. International Journal of Heat and Mass Transfer, 93, 566-583. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083##
Kew, P. A., & Cornwell, K. (1997). Correlations for the prediction of boiling heat transfer in small-diameter channels. Applied Thermal Engineering, 17(8), 705-715. https://doi.org/10.1016/S1359-4311(96)00071-3##
Kim, S. M., & Mudawar, I. (2013a). Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels–Part II. Two-phase heat transfer coefficient. International Journal of Heat and Mass Transfer, 64, 1239-1256. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.014##
Kim, S. M., & Mudawar, I. (2013b). Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling. International Journal of Heat and Mass Transfer, 58(1-2), 718-734. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.045##
Lee, H. J., & Lee, S. Y. (2001). Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios. International Journal of Multiphase Flow, 27(12), 2043-2062. https://doi.org/10.1016/S0301-9322(01)00054-4##
Lee, J., & Mudawar, I. (2005). Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics. International Journal of Heat and Mass Transfer, 48(5), 941-955. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.019##
Lee, P. S., & Garimella, S. V. (2008). Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays. International Journal of Heat and Mass Transfer, 51(3-4), 789-806. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.019##
Liu, Z., & R. Winterton, H. S. (1991). A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer, 34 (11), 2759-2766. https://doi.org/10.1016/0017-9310(91)90234-6##
Lockhart, R. W., & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chemical. Engineering and Processing, 45, 39-48.##
Martín-Callizo, C., Ali, R., & Palm, B. (2008). Dryout incipience and critical heat flux in saturated flow boiling of refrigerants in a vertical uniformly heated microchannel. ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels.##
Mishima, K., & Hibiki, T. (1996). Some characteristics of air-water two-phase flow in small diameter vertical tubes. International Journal of Multiphase Flow 22(4), 703-712. https://doi.org/10.1016/0301-9322(96)00010-9##
Moffat, R. J. (1988). Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science, 1, 3-17. https://doi.org/10.1016/0894-1777(88)90043-X##
Oh, J. T., Pamitran, A. S., Choi, K. I., & Hrnjak, P. (2011). Experimental investigation on two-phase flow boiling heat transfer of five refrigerants in horizontal small tubes of 0.5, 1.5 and 3.0mm inner diameters. International Journal of Heat and Mass Transfer, 54(9), 2080-2088. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.021##
Owhaib, W., Martin-Callizo, C., & Palm, B. (2004). Evaporative heat transfer in vertical circular microchannels, Applied Thermal Engineering, 24, 1241–1253. https://doi.org/10.1016/j.applthermaleng.2003.12.030##
Qiu, J., Zhao, Q., Lu, M., Zhou, J., Hu, D., Qin, H., & Chen, X. (2022). Experimental study of flow boiling heat transfer and pressure drop in stepped oblique-finned microchannel heat sink. Case Study in Thermal Engineering, 30, 101745. https://doi.org/10.1016/j.csite.2021.101745##
Rouhani, S. Z., & Axelsson, E. (1970). Calculation of void volume fraction in the subcooled and quality boiling regions. International Journal of Heat and Mass Transfer, 13, 383-393. https://doi.org/10.1016/0017-9310(70)90114-6##
Saisorn, S., Kaew-On, J., & Wongwises, S. (2011). Two-phase flow of R-134a refrigerant during flow boiling through a horizontal circular mini-channel. Experimental Thermal and Fluid Science, 35(6), 887-895. https://doi.org/10.1016/j.expthermflusci.2011.01.008##
Saitoh, S., Daiguji, H., & Hihara, E. (2005). Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes. International Journal of Heat and Mass Transfer, 48(23), 4973-4984. https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.035##
Saitoh, S., Daiguji, H., & Hihara, E. (2007). Correlation for boiling heat transfer ofR-134a in horizontal tubes including effect of tube diameter. International Journal of Heat and Mass Transfer, 50, 5215–5225. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.019##
Sandler, S., Zajaczkowski, B., & Krolicki, Z. (2018). Review on flow boiling of refrigerants R236fa and R245fa in mini and micro channels. International Journal of Heat and Mass Transfer, 126, 591-617. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.048##
Sempértegui-Tapia, D. F., & Ribatski, G. (2017). Two-phase frictional pressure drop in horizontal micro-scale channels: Experimental data analysis and prediction method development. International Journal of Refrigeration, 79, 143-163. https://doi.org/10.1016/j.ijrefrig.2017.03.024##
Steiner, D. (1993). Heat Transfer to boiling saturated liquids, in: VDI Wärmeatlas (VDI Heat Atlas). VDI Verlag, Düsseldorf, Germany.##
Sun, L., & Mishima, K. (2009). Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. International Journal of Multiphase Flow, 35(1), 47-54. https://doi.org/10.1016/j.ijmultiphaseflow.2008.08.003##
Tran, T. N., Wambsganss, M. W., & France, D. M. (1996). Small circular- and rectangular- channel boiling with two refrigerants. International Journal of Multiphase Flow, 22(3), 485-498. https://doi.org/10.1016/0301-9322(96)00002-X##
Wang, Y., & Sefiane, K. (2012). Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating. International Journal of Heat and Mass Transfer, 55(9), 2235-2243. https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.044##
Wu, J., Koettig, T., Franke, C., Helmer, D., Eisel, T., Haug, F., & Bremer, J. (2011). Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel. International Journal of Heat and Mass Transfer, 54(9), 2154-2162. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.009##
Xu, Y., Fang, X., Li, D., Li, G., Yuan, Y., & Xu, A. (2016). An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations. International Journal of Heat and Mass Transfer, 98, 150-163. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.018##
Yang, C. Y., & Webb, R. L. (1996). Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. International Journal of Heat and Mass Transfer, 39(4), 801-809. https://doi.org/10.1016/0017-9310(95)00151-4##
Yin, L. F., & Jia, L. (2016). Confined bubble growth and heat transfer characteristics during flow boiling in microchannel. International Journal of Heat and Mass Transfer, 98, 114-123. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.063##
Yin, L. F., Jia, L., Guan, P., & Liu, D. (2014). Experimental investigation on bubble confinement and elongation in microchannel flow boiling. Experimental Thermal and Fluid Science, 54, 290-296. https://doi.org/10.1016/j.expthermflusci.2014.01.004##
Yoshida, S., Mori, H., Hong, H., & Matsunaga, T. (2011). Prediction of Heat Transfer Coefficient for Refrigerants Flowing in Horizontal Evaporator Tubes. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers.##