Ai, W., & Fletcher, T. H. (2012). Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane.
Journal of Turbomachinery, 134(4), 1-12.
https://doi.org/10.1115/1.4003716##
Ai, W., Murray, N., Fletcher, T. H., Harding, S., Lewis, S., & Bons, J. P. (2012). Deposition near film cooling holes on a high pressure turbine vane.
Journal of Turbomachinery, 134(4), 1-11.
https://doi.org/10.1115/1.4003672##
Bonilla, C., Clum, C., Lawrence, M., Casaday, B., & Bons, J. P. (2013, June). The effect of film cooling on nozzle guide vane deposition. Proceedings of ASME Turbo Expo, Texas, US.##
Bons, J. P., Wammack, J. E., Crosby, J., Fletcher, D., & Fletcher, T. H. (2008). Evolution of surface deposits on a high-pressure turbine blade—part II: convective heat transfer. Journal of Turbomachinery, 130(2), 184–490.##
Bons, J. P., Prenter, R., & Whitaker, S. (2017). A simple physics-based model for particle rebound and deposition in turbomachinery.
Journal of Turbomachinery, 139(8), 081009–12.
https://doi.org/10.1115/1.4035921##
Boulanger, A., Patel, H., Hutchinson, J., Shong W. D., Xu, W., Ng, W., & Ekkad, S. (2016, June). Preliminary experimental investigation of initial onset of sand deposition in the turbine section of gas turbines. Proceedings of ASME Turbo Expo, Seoul, Republic of Korea.##
Bowen, C. P., Libertowskiو N. D., Mortazavi, M., & Bons, J. P. (2019). Modeling deposition in turbine cooling passages with temperature-dependent adhesion and mesh morphing. ASME.
Journal of Engineering for Gas Turbines and Power, 141(7), 1-12.
https://doi.org/10.1115/1.4042287##
Brun, K., Nored, M., & Kurz, R. (2012). Particle transport analysis of sand ingestion in gas turbine engines.
Journal of Engineering for Gas Turbines and Power, 134(1), 1-8.
https://doi.org/10.1115/1.4004187##
Cowan, J. B., Tafti, D. K., & Kohli, A. (2010 June).
Investigation of sand particle deposition and erosion within a short pin fin array. Proceedings of the ASME Turbo Expo, Glasgow, UK.
https://doi.org/10.1115/GT2010-22362##
Das, S. K., Sharma, M. M., & Schechter, R. S. (1995). Adhesion and hydrodynamic removal of colloidal particles from surfaces.
Particulate Science and Technology, 13, 227–247.
https://doi.org/10.1080/02726359508906680##
El-Batsh, H., & Haselbacher, H. (2002, June).
Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades. Proceedings of ASME Turbo Expo, Amsterdam, Netherlands.
https://doi.org/10.1115/GT2002-30600##
Forsyth, P. (2017). High temperature particle deposition with gas turbine applications. [Doctoral thesis, University of Oxford]. Oxford, Britain.##
Jiang, L. Y., Han, Y. H., & Patnaik, P. (2018). Characteristics of volcanic ash in a gas turbine combustor and nozzle guide vanes.
Journal of Engineering for Gas Turbines and Power, 140(7), 1-39.
https://doi.org/10.1115/1.4038523##
Land, C. C., Thole, K. A., & Joe, C. (2008, June).
Considerations of a double-wall cooling design to reduce sand blockage. Proceedings of ASME Turbo Expo, Berlin, Germany.
https://doi.org/10.1115/1.3153308##
Laycock, R., & Fletcher, T. H. (2015). Independent effects of surface and gas temperature on coal fly ash deposition in gas turbines at temperatures up to 1400 °C.
Journal of Engineering for Gas Turbines and Power, 138(2), 1-8.
https://doi.org/10.1115/GT2015-43575##
Ranz, W. E., & Marshall, W. R. (1952a). Evaporation from drops, part I and part II. Chemical Engineering Progress 48, 173–180.##
Ranz, W. E., & Marshall, W. R. (1952b). Evaporation from drops, part I. Chemical Engineering Progress 48, 141–146.##
Schneider, O., Dohmen, H. J., Benra, F., & Brillert, D. (2003, June).
Investigations of dust separation in the internal cooling air system of gas turbines. Proceedings of the ASME Turbo Expo, Georgia, Atlanta.
https://doi.org/10.1115/GT2003-38293##
Tabakoff, W., Hamed, A., & Murugan, D. M. (1996). Effect of target materials on the particle restitution characteristics for turbomachinery application.
Journal of Propulsion and Power, 12(2), 260–266.
https://doi.org/10.2514/3.24022##
Tian, K., Tang, Z., Wang, J., Vujanovic, M., Zeng, M., & Wang, Q. (2021). Numerical investigations of film cooling and particle impact on the blade leading edge.
Energies, 14, 1102(1-14).
https://doi.org/10.3390/en14041102##
Wammack, J. E., Crosby, J., Fletcher, D., & Fletcher, T. H. (2008). Evolution of surface deposits on a high-pressure turbine blade—part I: physical characteristics.
Journal of Turbomachinery, 130(2), 1-8.
https://doi.org/10.1115/1.2752182##
Wang, Z., Yin, Y., Yang, L., Yan, L., & Luan, Y. (2021). Flow and heat transfer performance of channels with 45 degree ribs in staggered array.
Journal of Applied Fluid Mechanics, 14(5), 1535-1546.
https://doi.org/10.47176/JAFM.14.05.32251##
Wylie, S., Bucknell, A., Forsyth, P., McGilvray, M., & Gillespie, D. R. H. (2017). Reduction in flow parameter resulting from volcanic ash deposition in engine representative cooling passages. ASME.
Journal of Turbomachinery 139(3), 1-13.
https://doi.org/10.1115/1.4034939##
Xing, Y. F., Spring, S., & Weigand, B. (2010). Experimental and numerical investigation of heat transfer characteristics of inline and staggered arrays of impinging jets.
Journal of Heat Transfe, 132(9), 1-11.
https://doi.org/10.1115/1.4001633##
Yonezawa, K., Nakai, G., Takayasu, M., Sugiyama, K., Sugita, K., Umezawa, S., & Ohmori, S. (2021). Influence of blade corrosion on aerodynamic characteristics of a gas turbine.
Energy, 230, 1-17.
https://doi.org/10.1016/j.energy.2021.120665##
Zhang, W., Zeng, R., Lu, J., Liu, S., Cha, H. Y., & Li, G. C. (2022). Investigation of cooling performance degradation of impingement/effusion structure on pressure side of nozzle guide vane.
Case Studies in Thermal Engineering, 33, 1-12.
https://doi.org/10.1016/j.csite.2022.101991##