Influence of External Magnetic Field on 3D Thermocapillary Convective Flow in Various Thin Annular Pools Filled with Silicon Melt

Document Type : Regular Article

Authors

1 Department of Mechanical, University of UAMO-Bouira, 10000, Algeria

2 Laboratory of Materials and Sustainable Development (LMDD), University of AMO-Bouira, 10000, Algeria

3 Technicum of Collo, Education –Skikda, 21000, Algeria

Abstract

Thermocapillary convection flows can have an impact on the homogeneity of floating zone semiconductor crystals. An external magnetic field can also help to reduce this non-homogeneity. The goal of this research is to minimize thermocapillary convection in various thin annular pools filled with silicon melt. A three-dimensional (3D) numerical technique is proposed that employs an implicit finite volume formulation. The steady-state thermocapillary flow in six thin annular pools (R=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) subjected to an externally induced magnetic field was observed. Under magnetic field influence, the effects of increasing annular gap, R on the hydrothermal wave number and azimuthal pattern are obtained. The results reveal that hydrothermal waves m=14, m=11, m=8, m=6, m=4, and m=3 are observed in steady flow for R=0.3; 0.4; 0.5; 0.6; 0.7, and R=0.8, respectively. The maximum temperature occurs in the intermediate zone between the inner and outer walls when there is no magnetic field. Under a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value.

Keywords

Main Subjects


Bendjaghlouli, A., Mahfoud, B., & Ameziani, D. E. (2019a). Magnetohydrodynamic flow in a truncated conical enclosure, Journal of Thermal Engineering, 5, 77-83. https://doi.org/10.18186/thermal.532133##
Bendjaghlouli, A., Ameziani, D. E., Mahfoud B., & Bouragbi, L. (2019b). Magnetohydrodynamic counter rotating flow and heat transfer in a truncated conical container, Journal Thermophysics and Heat Transfer,865-874. https://doi.org/10.2514/1.T5529##
Benhacine, H., Mahfoud, B., & Salmi, M. (2021). Stability effect of an axial magnetic field on fluid flow bifurcation between coaxial cylinders, International Journal of Computational Materials Science and Engineering 10, 2150023. https://doi.org/10.1142/S2047684121500238##
Benhacine, H., Mahfoud, B., & Salmi, M. (2022a). Stability of an Electrically Conducting Fluid Flow between Coaxial Cylinders under Magnetic field. Journal of Applied Fluid Mechanics 15, 1741-1753. https://doi.org/10.47176/JAFM.15.02.33050##
Benhacine, H., Mahfoud, B., & Salmi, M. (2022b). Stability of conducting fluid flow between coaxial cylinders under thermal gradient and axial magnetic Field. International Journal of Thermofluid Science and Technology, 9, 090202. https://doi.org/10.36963/IJTST.2022090202##
Bhuvaneswari, M., Sivasankaran, S., & Kim, Y. J. (2011). Magnetoconvection in a square enclosure with sinusoidal temperature distributions on both side walls, Numerical Heat Transfer, Part A: Applications, 59 (3), 167-184. https://doi.org/10.1080/10407782.2011.541219##
Boulkroune S., Kholai, O., & Mahfoud, B. (2021). Effects of Important Parameters on the transition from forced to mixed convection flow in a square cavite, Defect and Diffusion Forum, 406, 36-52. https://doi.org/10.1142/S2047684121500238##
Bouragbi L., Salaheddine, A., & Mahfoud, B. (2021). Analyses of entropy generation for a solar minichannel flat plate collector system using different types of nanofluids, Journal of Computational Applied Mechanics, 52(4), 664-681. https://doi.org/10.22059/jcamech.2021.333705.66 ##
Dash, S. C. (2021). MHD braking and joules heating effect in a rotating confined cylindrical cavity packed with liquid metal, FME Transactions, 49(2),437-444. https://doi:10.5937/fme2102437D ##
Dash, S. C. (2017). Study of axisymmetric nature in 3-d swirling flow in a cylindrical annulus with a top rotating lid under the influence of axial temperature gradient or axial magnetic field, Journal of Thermal Engineering, 3(6), 1588-1606. https://doi.org/10.18186/journal-of-thermal-engineering.353737##
Dash, S. C., & Singh, N. (2019a). Effect of a strong axial magnetic field on swirling flow in a cylindrical cavity with a top rotating lid, International Journal of Modern Physics C, 30(11), 1950092.  https://doi.org/10.1142/S012918311950092X##
Dash, S. C., & Singh, N. (2019b). Influence of axial magnetic field on swirling flow and vortex breakdown zones in a cylindrical cavity with a rotating lid, International Journal of Applied Mechanics, 11(06), 1950054. https://doi.org/10.1142/S1758825119500546##
Karthikeyan, S., Bhuvaneswari, M., Sivasankaran, S., & Rajan, S. (2016). Soret and dufour effects on mhd mixed convection heat and mass transfer of a stagnation point flow towards a vertical plate in a porous medium with chemical reaction, radiation and heat generation, Journal of Applied Fluid Mechanics, 9 (3), 1447-1455. https://doi.org/10.18869/acadpub.jafm.68.228.24135##
Laouari, A., Mahfoud, B., & Hadjadj, A. (2021). Hydrodynamic instabilities in swirling flow under axial magnetic field. European Journal of Mechanics-B/Fluids, 85, 245-260. https://doi.org/10.1016/j.euromechflu.2020.08.006##
Li, Y. R., Imaishi, N., Azami, T., & Hibiya, T. (2004). Three-dimensional oscillatory flow in a thin annular pool of silicon melt. Journal of Crystal Growth, 260, 28–42. https://doi.org/10.1016/j.jcrysgro.2003.08.017##
Mahfoud, B., & Bessaїh, R. (2012a). Stability of swirling flows with heat transfer in a cylindrical  enclosure with co/counter-rotating end disks under an axial magnetic field. Numerical Heat Transfer, Part A, 463-482. https://doi.org/10.1080/10407782.2012.654461##
Mahfoud, B. (2021a). Effects of an axial magnetic field on vortex breakdown and fluid layer. Journal of Applied Fluid Mechanics, 14, 1741–1753.  https://doi.org/10.47176/jafm.14.06.32585##
Mahfoud, B. (2021b). Magnetohydrodynamic effect on vortex breakdown zones in coaxial cylinders. European Journal of Mechanics-B/Fluids, 89, 445–457.  https://doi.org/10.1016/j.euromechflu.2021.07.007 0997-7546##
Mahfoud, B. (2022). Simulation of magnetic field effect on heat transfer enhancement of swirling nanofluid. International Journal of Computational Materials Science and Engineering, 11(4), 2250007.  https://doi.org/10.1142/S2047684122500075##
Mahfoud, B. (2023a). Effect of wall electrical conductivity on heat transfer enhancement of swirling nanofluid-flow. Journal of Nanofluids, 12, 418-428.  https://doi.org/10.1166/jon.2023.1932##
Mahfoud, B. (2023b). Enhancement heat transfer of swirling nanofluid using an electrical conducting. Lid Journal of Thermophysics and Heat Transfer, 37, 263-271. https://doi.org/10.2514/1. T6550##
Mahfoud, B., & Bendjaghloli, A. (2018). Natural convection of a nanofluid in a conical container. Journal of Thermal Engineering, 4, 1713-1723. https://doi.org/10.18186/journal-of-thermal-engineering.367407##
Mahfoud, B., &  Mahfoud, Hibet. E. (2023). Behaviors of vortex breakdown in steady-state and oscillatory flow under an axial magnetic, Researchgate.net/publication. https://doi.org/10.13140/RG.2.2.14239.23200.##
Mahfoud, B., & Moussaoui, M. (2023). Effects of buoyancy force and magnetic field on laminar vortex breakdown and fluid layers. Journal of Thermal Engineering, 9(1), 12–23. https://doi.org/10.18186/thermal.1232431##
Mahfoud, B., & Bessaїh, R. (2012b). Oscillatory swirling flows in a cylindrical enclosure with co-/counter-rotating end disks submitted to a vertical temperature gradient. Fluid Dynamics &MaterialsProcessing, 2012, 8(1), 126. https://doi.org/10.3970/fdmp.2011.008.001##
Mahfoud, B., Bendjaghlouli, A., & Bessih, R. (2016). Magneto-hydrodynamic co-rotating flow in a vertical cylindrical container, Numer. Heat Transfer, 69(12,) 1051-1063.  https://doi.org/10.1080/10407782.2015.1109383##
Mahfoud, B., Laouari, A., Hadjadj, A., & Benhacine, H. (2019a). Counter-rotating flow in coaxial cylinders under an axial magnetic field. European Journal of Mechanics-B/Fluids, 78, 139-46.  https://doi.org//10.1016/j.euromechflu.2019.06.009##
Mahfoud, B., Benhacine, H., Laouari, A., & Bendjaghlouli, A. (2019b). Magnetohydrodynamic effect on flow structures between coaxial cylinders heated from below. Journal of Thermophysics and Heat Transfer, 34(2), 265–274. https://doi.org/10.2514/1.T5805##
Mahfoud, B., & Bessih, R. (2016). Magnetohydrodynamic counter-rotating flow in a cylindrical cavity. International Journal of Heat and Mass Transfer, 93, 175–185.   https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.009##
Malleswaran, A., & Sivasankaran, S. (2016). A Numerical simulation on Mhd mixed convection in a lid-driven cavity with corner heaters, Journal of Applied Fluid Mechanics, 9 (1), 311-319. https://doi.org/10.18869/acadpub.jafm.68.224.22903##
Mihel, M., & Wingerath, K. (1987). Three-dimensional simulations of the Czochralski bulk flow in a stationary transverse field and in a vertical magnetic field: Effects on the asymmetry of the flow and temperature distribution in the Si melt. Journal of Crystal Growth, 82, 318–326.  https://doi.org/10.1016/0022-0248(87)90320-4##
 Niranjana, H., Sivasankarana, S., & Bhuvaneswarib, M. (2017). Chemical reaction, Soret and Dufour effects on MHD mixed convection stagnation point ow with radiation and slip condition, Scientia Iranica B, 24(2), 698-706. https://doi.org/10.24200/sci.2017.4054##
Okano, Y., Hatano, A., & Hirata, A. (1989). Natural and marangoni convections in a floating zone. Journal of Chemical Engineering of Japan, 22, 385– 388. https://doi.org/10.1252/jcej.22.385##
Patankar, S. (1980). Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New-York.##
Rao, F., & Peng, L. (2017). Effect of axial magnetic field on thermocapillary convection with bidirectional temperature gradients in a shallow annular. Crystal Research and Technology. 1600342. https://doi.org/10.1002/crat.201600342##
Sankar, M., Venkatachalappa, M., & Do, Y. (2011). Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure. International Journal of Heat & FluidFlow, 32,402–412.  https://doi.org/10.1016/j.ijheatfluidflow.2010.12.001##
Sivasankaran, S., & Ching-Jenq, H. (2008). Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity, International Journal of Thermal Sciences, 49 (9), 1184-1194. https://doi.org/10.1016/j.ijthermalsci.2007.10.001##
Sivasankaran, S., Malleswaran, A., Lee, J., & Sundar, P. (2011). Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal boundary conditions on both sidewalls, International Journal of Heat and Mass Transfer, 54(1-3), 512-525. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.018##
Sivasankaran, S., Niranjan, H., &  Bhuvaneswari, M. (2017). Chemical reaction, radiation and slip effects on MHD mixed convection stagnation-point flow in a porous medium with convective boundary condition, International Journal of Numerical Methods for Heat & Fluid Flow, 27(2), 454 -470. https://doi.org/10.1108/HFF-02-2016-0044##
Slatni, Y., Messai, T., & Mahfoud, B. (2022). Numerical simulation of thermal behavior in a naturally ventilated greenhouse, International Journal of Computational Materials Science and Engineering, 11, 2150034. https://doi.org/10.1142/S2047684121500342##
Voronkov, V. (1982). The mechanism of swirl defects formation in silicon. Journal of Crystal Growth, 59-3, 625-643. https://doi.org/10.1016/0022-0248(82)90386-4##
Wang, C., Zhang, H., Wang, T. H., & Ciszek, T. F. (2003). A continuous Czochralski silicon crystal growth system. Journal of Crystal Growth, 250(1), 209-214. https://doi.org/10.1016/S0022-0248(02)02241-8##
Wang, F., Pang, L., & Quan Zhuang, Z. (2014). Three-dimensional flow in a thin annular layer of silicon melts with bidirectional temperature gradients. Crystal Research and Technology, 49(10), 829–835. https://doi.org/10.1002/crat.201400212##
Wang, F., Peng, L., Zhang, Q. Z., & Liu, J. (2015). Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool. Acta Physica  Sinica, 14, 17–24. https://doi.org/10.7498/aps.64.140202##