AIR1419C (2017). Inlet total pressure distortion considerations for gas turbine engines. SAE International.##
AIR5686 (2017). A methodology for assessing inlet swirl distortion, SAE International.##
ARP1420C (2017). Gas turbine engine inlet flow distortion guidelines. SAE International.##
Bachchan, N., & Hillie, R. (2004a,August). Effects of Hypersonic Inlet Flow Non-Uniformities on Stabilising Isolator Shock Systems. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island.##
Bachchan, N., & Hillie, R. (2004b, August). Hypersonic inlet flow analysis at off-design conditions. 22nd Applied Aerodynamics Conference and Exhibit, Providence, Rhode Island.##
Brahmachary, S., & Ogawa, H. (2021). Multipoint design optimization of busemann-based intakes for scramjet-powered ascent flight.
Journal of Propulsion and Power, 37:6, 850-867.
https://doi.org/10.2514/1.B38383##
Ding, F., Liu, J., Shen, C., Huang, W., Liu, Z., & Chen, S. (2018). An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles.
Acta Astronautica, 152, 639-656.
https://doi.org/10.1016/j.actaastro.2018.09.002##
Flock, A. K., & Gülhan, A. (2016). Viscous effects and truncation effects in axisymmetric busemann scramjet intakes.
AIAA Journal, 54:6, 1881-1891.
https://doi.org/10.2514/1.J054287##
Geurts, B. J., Kuerten, J. G. M., Vreman, A. W., Theofilis, V., & Zandbergen, P. J. (1993). A finite volume approach to compressible Large Eddy Simulations.
Applied Scientific Research, 51, 325-329.
https://doi.org/10.1007/978-94-011-1689-3_52##
Heiser, W., Pratt, D., Daley, D., & Mehta, U. (1994). Hypersonic airbreathing propulsion. American Institute of Aeronautics and Astronautics, Reston, USA.##
Luo, S., Sun, Y., Liu, J., Song J., & Cao, W., (2022). Performance analysis of the hypersonic vehicle with dorsal and ventral intake.
Aerospace Science and Technology, 113 A, 1270-9638.
https://doi.org/10.1016/j.ast.2022.107964##
Ma, B., Wang, G., Wu, J., & Ye, Z. (2020). Avoiding choked flow and flow hysteresis of busemann biplane by stagger approach.
Journal of Aircraft, 57(3), 440-455.
https://doi.org/10.2514/1.C035664##
Malo-Molina, F. J., Gaitonde, D. V., Ebrahimi, H. B., & Ruffin, S. M. (2010). Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets.
AIAA Journal, 48(3), 572-582.
https://doi.org/10.2514/1.43646##
McGann, B., Lee, T., Ombrello, T., Carter, C. D., Hammack, S. D., & Do, H. (2019). Inlet distortion effects on fuel distribution and ignition in scramjet cavity flameholder.
Journal of Propulsion and Power, 35(3), 601-613.
https://doi.org/10.2514/1.B37204##
Ombrello, T., Peltier, S., & Carter, C. D. (2015). Effects of inlet distortion on cavity ignition in supersonic flow. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida.##
Ramunno, M. A., Boyd, I. M., Grandhi, R. V., & Camberos, J. (2022). Integrated hypersonic aeropropulsion model for multidisciplinary vehicle analysis and optimization.
Journal of Propulsion and Power, 38(3), 478-488.
https://doi.org/10.2514/1.B38573##
Schulte, D., Henckels, A., & Neubacher, R. (2001). Manipulation of shock/boundary-layer interactions in hypersonic inlets.
Journal of Propulsion and Power, 17(3), 585-590.
https://doi.org/10.2514/2.5781##
Wang, C., Tian, X., Yan, L., Xue, L., & Cheng, K. (2015). Preliminary integrated design of hypersonic vehicle configurations including inward-turning inlets.
Journal of Aerospace Engineering, 28(6), 04014143.
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000480##
Wang, X., Wang, J., & Lyu, Z. (2016). A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles.
Acta Astronautica, 126, 424-438.
https://doi.org/10.1016/j.actaastro.2016.06.022##
Xie, W., Wu, Z., Yu, A., & Guo, S. (2018). Control of severe shock-wave/boundary-layer interactions in hypersonic inlets.
Journal of Propulsion and Power, 34(3), 614-623.
https://doi.org/10.2514/1.B36614##
Xu, S., Wang, Y., Wang, Z., Fan, X., & Xiong, B. (2022). Experimental investigations of hypersonic inlet unstart/restart process and hysteresis phenomenon caused by angle of attack.
Aerospace Science and Technology, 126, 107621.
https://doi.org/10.1016/j.ast.2022.107621##
Zhai, J., Zhang, C., Wang, F., & Zhang, W. (2022). Control of shock-wave/boundary-layer interaction using a backward-facing step.
Aerospace Science and Technology, 126, 107665.
https://doi.org/10.1016/j.ast.2022.107665##
Zhang, Y., Tan, H., Zhuang, Y., & Wang, D. (2014). Influence of expansion waves on cowl shock/boundary layer interaction in hypersonic inlets.
Journal of Propulsion and Powe,r 30(5), 1183-1191.
https://doi.org/10.2514/1.B35090##
Zhang, Y., Zhang, L., He, X., Deng, X., & Sun, H (2017). Detached eddy simulation of complex separation flows over a modern fighter 313 model at high angle of attack.
Communications in Computational Physics, 22, 1309–1332.
https://doi.org/10.4208/cicp.OA-2016-0132##