Banazadeh, A., & Saghafi, F. (2017). An investigation of empirical formulation and design optimisation of co-flow fluidic thrust vectoring nozzles.
The Aeronautical Journal, 121(1236), 213–236.
https://doi.org/10.1017/aer.2016.110##
Cen, Z., Smith, T., Stewart, P., & Stewart, J. (2015). Integrated flight/thrust vectoring control for jet-powered unmanned aerial vehicles with ACHEON propulsion.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(6), 1057–1075.
https://doi.org/10.1177/0954410014544179##
Das, S. S., Páscoa, J. C., Trancossi, M., & Dumas, A. (2016). Computational fluid dynamic study on a novel propulsive system: ACHEON and its integration with an unmanned aerial vehicle (UAV).
Journal of Aerospace Engineering, 29(1), 04015015.
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000498##
El Halal, Y., Marques, C. H., Rocha, L. A., Isoldi, L. A., Lemos, R. D. L., Fragassa, C., & Dos Santos, E. D. (2019). Numerical study of turbulent air and water flows in a nozzle based on the Coanda effect.
Journal of Marine Science and Engineering, 7(2), 21, 1–13.
https://doi.org/10.3390/jmse7020021##
Jain, S., Roy, S., Gupta, D., Kumar, V., & Kumar, N. (2015). Study on fluidic thrust vectoring techniques for application in V/STOL aircrafts.
SAE Technical Paper, No. 2015–01–2423.
https://doi.org/10.4271/2015-01-2423##
Juvet, P. (1994). Control of high Reynolds number round jets. (Publication No. 9414588). [Doctoral dissertation, Stanford University]. ProQuest Dissertations and Theses Global.##
Kara, E., & Erpulat, H. (2021). Experimental investigation and numerical verification of Coanda effect on curved surfaces using co-flow thrust vectoring.
International Advanced Researches and Engineering Journal 5 (1), 72–78.
https://doi.org/10.35860/iarej.758397##
Roache, P. J. (1994). Perspective: a method for uniform reporting of grid refinement studies.
ASME Journal of Fluids Engineering, 116(3), 405–13.
https://doi.org/10.1115/1.2910291##
Sidiropoulos, V., & Vlachopoulos, J. (2000). An investigation of Venturi and Coanda effects in blown film cooling.
International Polymer Processing, 15(1), 40–45.
https://doi.org/10.3139/217.1575##
Springer, A. M. (2008, January 7-10).
50 Years of NASA Aeronautics Achievements [Conference session]. 46. AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, United States.
https://doi.org/10.2514/6.2008-859##
Trancossi, M., Madonia, M., Dumas, A., Angeli, D., C. Bingham, Das, S. S., Grimaccia, F., Marques, J. P., Porreca, E., Smith, T., Stewart, P., Subhash, M., Sunol, A., & Vucinic, D. (2016a). A new aircraft architecture based on the ACHEON Coanda effect nozzle: flight model and energy evaluation.
European Transport Research Review, 8(2), 1–21.
https://doi.org/10.1007/s12544-016-0198-4##
Trancossi, M., Stewart, J., Maharshi, S., & Angeli, D. (2016b). Mathematical model of a constructal Coanda effect nozzle.
Journal of Applied Fluid Mechanics, 9(6), 2813–2822.
https://doi.org/10.29252/jafm.09.06.23508##
Warsop, C., Crowther, W. & Forster, M. (2019, January 7-11).
NATO AVT-239 Task Group: Supercritical Coanda based circulation control and fluidic thrust vectoring [Conference session]. AIAA Scitech 2019, San Diego, California, United States.
https://doi.org/10.2514/6.2019-0044##
Wu, K., Zhang, G., Kim, T. H., & Kim, H. D. (2020). Numerical parametric study on three-dimensional rectangular counter-flow thrust vectoring control.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(16), 2221–2247.
https://doi.org/10.1177/0954410020925602##