Ansys Fluent 12. (2009). Fluid Simulation Software. (version 12) [software]. https://www.ansys.com/products/fluids/ansys-fluent##
Baba, A. F., Samiran, N. A., Abd Rashid, R., Ishak, I. A., Salleh, Z. M., Madon, R. H., & Hamid, M. S. S. (2022). Effect of impeller’s blade number on the performance of mixing flow in stirred tank using CFD simulation method.
CFD Letters, 14(5), 33-42.
https://doi.org/10.37934/cfdl.14.5.3342##
Bakker, A. (2006). Modeling Flow Fields in Stirred Tanks: Reacting Flows - Lecture 7(FLUENT). https://www.bakker.org/##
Chapple, D., Kresta, S. M., Wall, A., & Afacan, A. (2002). The effect of impeller and tank geometry on power number for a pitched blade turbine.
Chemical Engineering Research and Design, 80(4), 364-372.
https://doi.org/10.1205/026387602317446407##
Coroneo, M., Montante, G., Paglianti, A., & Magelli, F. (2011). CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations.
Computers & Chemical Engineering, 35(10), 1959-1968.
https://doi.org/10.1016/j.compchemeng.2010.12.007##
Delgadillo, J. A., & Rajamani, R. K. (2005). A comparative study of three turbulence-closure models for the hydrocyclone problem.
International Journal of Mineral Processing, 77(4), 217-230.
https://doi.org/10.1016/j.minpro.2005.06.007##
Desobgo, S. C. Z. (2018). Modernization of fermenters for large-scale production in the food and beverage industry.
Innovations in Technologies for Fermented Food and Beverage Industries, 189-220.
https://doi.org/10.1007/978-3-319-74820-7_11##
Devi, T. T., & Kumar, B. (2011). Analyzing flow hydrodynamics in stirred tank with CD-6 and Rushton impeller. International Review of Chemical Engineering, 3(4), 440-448.##
Devi, T. T., & Kumar, B. (2012). CFD simulation of flow patterns in unbaffled stirred tank with CD-6 impeller.
Chemical Industry and Chemical Engineering Quarterly, 18(4-1), 535-546.
https://doi.org/10.2298/CICEQ111130029D##
Dong, J., Hu, B., Pacek, A. W., Yang, X., & Miles, N. J. (2016). The effect of bottom shape and baffle length on the flow field in stirred tanks in turbulent and transitional flow.
International Journal of Mechanical and Mechatronics Engineering, 10(9), 1651-1660.
https://doi.org/10.5281/zenodo.1126537##
Doran, P. M. (1995). Bioprocess Engineering Principles. Academic Press.##
Guha, D., Ramachandran, P. A., Dudukovic, M. P., & Derksen, J. J. (2008). Evaluation of large Eddy simulation and Euler‐Euler CFD models for solids flow dynamics in a stirred tank reactor.
AIChE Journal, 54(3), 766-778. https://doi.org/10.1002/aic.11417.
http://www.bakker.org/dartmouth06/engs199/09-blend.pdf##
Jakobsen, H. A. (2008). Chemical reactor modeling. Multiphase Reactive Flows. Springer International Publishing.##
Khapre, A., & Munshi, B. (2014). Numerical comparison of Rushton turbine and CD-6 impeller in non-Newtonian fluid stirred tank. International Journal of
Chemical and Molecular Engineering, 8(11), 1260-1267.
https://doi.org/10.5281/zenodo.1097247##
Landucci, G., Antonioni, G., Tugnoli, A., & Cozzani, V. (2012). Release of hazardous substances in flood events: Damage model for atmospheric storage tanks.
Reliability Engineering & System Safety, 106, 200-216.
https://doi.org/10.1016/j.ress.2012.05.010##
Lane, G., & Koh, P. T. L. (1997, july
). CFD simulation of a Rushton turbine in a baffled tank. Proceedings International Conference on Computational Fluid Dynamics in Mineral and Metal Processing and Power Generation, CSIRO, Melbourne, Australia.
https://www.cfd.com.au/cfd_conf97/papers/lan035.pdf##
Liangchao, L., Ning, C., Kefeng, X., & Beiping, X. (2019). CFD study on the flow field and power characteristics in a rushton turbine stirred tank in laminar regime.
International Journal of Chemical Reactor Engineering, 17(11), 1-17.
https://doi.org/10.1515/ijcre-2018-0215##
McCabe, W. L., Smith, J. C., & Harriott, P. (2007). Unit Operations of Chemical Engineering. McGraw-Hill.##
Mendoza-Escamilla, V. X., Alonzo-García, A., Mollinedo, H. R., González-Neria, I., Yáñez-Varela, J. A., & Martinez-Delgadillo, S. A. (2018). Assessment of k–ε models using tetrahedral grids to describe the turbulent flow field of a PBT impeller and validation through the PIV technique.
Chinese Journal of Chemical Engineering, 26(5), 942-956.
https://doi.org/10.1016/j.cjche.2018.02.012##
Micale, G., Montante, G., Grisafi, F., Brucato, A., & Godfrey, J. (2000). CFD simulation of particle distribution in stirred vessels.
Chemical Engineering Research and Design, 78(3), 435-444.
https://doi.org/10.1205/026387600527338##
Montante, G., Lee, K. C., Brucato, A., & Yianneskis, M. (2001). Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels.
Chemical Engineering Science, 56(12), 3751-3770.
https://doi.org/10.1016/S0009-2509(01)00089-6##
Mustafa, S., Taha, M. M., Zatout, A. A., Sedahmed, G. H., & El-Gayar, D. A. (2021). Mass transfer at the outer surface of a spiral tube heat exchanger in a stirred tank reactor and possible applications.
Chemical Engineering Research and Design, 165, 426-434.
https://doi.org/10.1016/j.cherd.2020.11.023##
Nagy, P., & Juhasz, J. (2016). Review of present knowledge on machine milking and intensive milk production in dromedary camels and future challenges.
Tropical Animal Health and Production, 48(5), 915-926.
https://doi.org/10.1007/s11250-016-1036-3##
Nili-Ahmadabadi, M., Durali, M., & Hajilouy, A. (2014). A novel aerodynamic design method for centrifugal compressor impeller.
Journal of Applied Fluid Mechanics, 7(2), 329-344.
https://doi.org/10.36884/JAFM.7.02.20279##
Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (2004). Handbook of Industrial Mixing: Science and Practice. John Wiley & Sons.##
Prabhu, M., Sreenath, K., Ajith Kumar, R., Jayakumar, J. S., & Joshy, P. J. (2021). Rankine vortex suppression in tanks with conical base: a numerical investigation.
Journal of Spacecraft and Rockets, 58(2), 326-333.
https://doi.org/10.2514/1.A34794##
Pukkella, A. K., Vysyaraju, R., Tammishetti, V., Rai, B., & Subramanian, S. (2019). Improved mixing of solid suspensions in stirred tanks with interface baffles: CFD simulation and experimental validation.
Chemical Engineering Journal, 358, 621-633.
https://doi.org/10.1016/j.cej.2018.10.020##
Qi, N., Zhang, H., Zhang, K., Xu, G., & Yang, Y. (2013). CFD simulation of particle suspension in a stirred tank.
Particuology, 11(3), 317-326.
https://doi.org/10.1016/j.partic.2012.03.003##
Singh, H., Fletcher, D. F., & Nijdam, J. J. (2011). An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine.
Chemical Engineering Science, 66(23), 5976-5988.
https://doi.org/10.1016/j.ces.2011.08.018##
Sivakumar, V., Visagavel, K., & Selvakumar, A. (2017). Analysis of Ventilation Rate in Cross Ventilated Rooms by Varying Aperture Shape of Windows using CFD.
Journal of Applied Fluid Mechanics, 10, 61-68.
https://doi.org/10.36884/JAFM.10.SI.28271##
Todaro, C. M., & Vogel, H. C. (2014). Fermentation and biochemical engineering handbook. William Andrew.##
Venneker, B. C., Derksen, J. J., & Van den Akker, H. E. (2010). Turbulent flow of shear-thinning liquids in stirred tanks—The effects of Reynolds number and flow index.
Chemical Engineering Research and Design, 88(7), 827-843.
https://doi.org/10.1016/j.cherd.2010.01.002##
Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Prentice Hall.##
Youcef, K., Bouzit, M., Hadjeb, A., Arab, I. M., & Beloudane, M. (2016). CFD study of the effect of baffles on the energy consumption and the flow structure in a vessel stirred by a Rushton turbine.
Mechanics, 22(3), 190-197.
https://doi.org/10.5755/j01.mech.22.3.12663##