Bittencout, F. R., & Zárate, L. E. (2011). Hybrid structure based on previous knowledge and GA to search the ideal neurons quantity for the hidden layer of MLP—Application in the cold rolling process.
Applied Soft Computing,
11(2), 2460-2471.
https://doi.org/https://doi.org/10.1016/j.asoc.2010.10.002##
Dhande, D. Y., Choudhari, C. S., Gaikwad, D. P., & Dahe, K. B. (2022). Development of artificial neural network to predict the performance of spark ignition engine fuelled with waste pomegranate ethanol blends.
Information Processing in Agriculture.
https://doi.org/https://doi.org/10.1016/j.inpa.2022.05.001##
Duan, H., Huang, Y., Mehra, R. K., Song, P., & Ma, F. (2018). Study on influencing factors of prediction accuracy of support vector machine (SVM) model for NOx emission of a hydrogen enriched compressed natural gas engine.
Fuel,
234, 954-964.
https://doi.org/https://doi.org/10.1016/j.fuel.2018.07.009##
Fu, J., Yang, R., Li, X., Sun, X., Li, Y., Liu, Z., Zhang, Y., & Sunden, B. (2022). Application of artificial neural network to forecast engine performance and emissions of a spark ignition engine.
Applied Thermal Engineering,
201, 117749.
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.117749##
Gürgen, S., Ünver, B., & Altın, İ. (2018). Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network. Renewable Energy, 117, 538-544. https://doi.org/https://doi.org/10.1016/j.renene.2017.10.101##
Hao, B., Song, C., Lv, G., Li, B., Liu, X., Wang, K., & Liu, Y. (2014). Evaluation of the reduction in carbonyl emissions from a diesel engine using Fischer–Tropsch fuel synthesized from coal.
Fuel,
133, 115-122.
https://doi.org/https://doi.org/10.1016/j.fuel.2014.05.025##
Hao, D., Mehra, R. K., Luo, S., Nie, Z., Ren, X., & Fanhua, M. (2020). Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition.
International Journal of Hydrogen Energy,
45(8), 5309-5325.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.04.039##
Huang, Z., Huang, J., Luo, J., Hu, D., & Yin, Z. (2022). Performance enhancement and emission reduction of a diesel engine fueled with different biodiesel-diesel blending fuel based on the multi-parameter optimization theory.
Fuel,
314, 122753.
https://doi.org/https://doi.org/10.1016/j.fuel.2021.122753##
Jiao, Y., Liu, R., Zhang, Z., Yang, C., Zhou, G., Dong, S., & Liu, W. (2019). Comparison of combustion and emission characteristics of a diesel engine fueled with diesel and methanol-Fischer-Tropsch diesel-biodiesel-diesel blends at various altitudes.
Fuel,
243, 52-59.
https://doi.org/https://doi.org/10.1016/j.fuel.2019.01.107##
Kavitha, R., & Mukesh Kumar, P. C. (2018). A Comparison between MLP and SVR Models in Prediction of Thermal Properties of Nano Fluids.
Journal of Applied Fluid Mechanics,
11, 7-14.
https://doi.org/10.36884/jafm.11.SI.29411##
Kim, Y. D., Yang, C. W., Kim, B. J., Moon, J. H., Jeong, J. Y., Jeong, S. H., Lee, S. H., Kim, J. H., Seo, M. W., Lee, S. B., Kim, J. K., & Lee, U. D. (2016). Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process.
Applied Energy,
180, 301-312.
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.07.095##
Krishnamoorthi, M., Malayalamurthi, R., & Sakthivel, R. (2019). Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation.
Renewable Energy,
134, 579-602.
https://doi.org/https://doi.org/10.1016/j.renene.2018.11.062##
Neves, R. C., Klein, B. C., da Silva, R. J., Rezende, M. C. A. F., Funke, A., Olivarez-Gómez, E., Bonomi, A., & Maciel-Filho, R. (2020). A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production.
Renewable and Sustainable Energy Reviews,
119, 109607.
https://doi.org/https://doi.org/10.1016/j.rser.2019.109607##
Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247(4945), 978-982.##
Şener, R. (2022). Numerical Investigation of Ducted Fuel Injection Strategy for Soot Reduction in Compression Ignition Engine.
Journal of Applied Fluid Mechanics,
15(2), 475-489.
https://doi.org/10.47176/jafm.15.02.33088##
Shamshirband, S., Tabatabaei, M., Aghbashlo, M., Yee, P. L., & Petković, D. (2016). Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel–diesel blends containing expanded polystyrene.
Applied Thermal Engineering,
94, 727-747.
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2015.10.140##
Shi, J., Wang, T., Zhao, Z., Wu, Z., & Zhang, Z. (2019). Cycle-to-Cycle Variation of a Diesel Engine Fueled with Fischer–Tropsch Fuel Synthesized from Coal.
Applied Sciences,
9(10), 2032.
https://www.mdpi.com/2076-3417/9/10/2032##
Shi, J., Wang, T., Zhao, Z., Yang, T., & Zhang, Z. (2018). Experimental Study of Injection Parameters on the Performance of a Diesel Engine with Fischer–Tropsch Fuel Synthesized from Coal.
Energies,
11(12), 3280-3292.
https://www.mdpi.com/1996-1073/11/12/3280##
Soloiu, V., Wiley, J. T., Gaubert, R., Mothershed, D., Carapia, C., Smith, R. C., Williams, J., Ilie, M., & Rahman, M. (2020). Fischer-Tropsch coal-to-liquid fuel negative temperature coefficient region (NTC) and low-temperature heat release (LTHR) in a constant volume combustion chamber (CVCC).
Energy,
198, 117288.
https://doi.org/https://doi.org/10.1016/j.energy.2020.117288##
Zhao, F., Yang, W., Zhou, D., Yu, W., Li, J., & Tay, K. L. (2017). Numerical modelling of soot formation and oxidation using phenomenological soot modelling approach in a dual-fueled compression ignition engine.
Fuel,
188, 382-389.
https://doi.org/https://doi.org/10.1016/j.fuel.2016.10.054##