Abramson, H. N. (1966). The dynamic behavior of liquids in moving containers, with applications to space vehicle technology. NASA SP-106, Washington.##
Boroomand, B., Bazazzadeh, S., & Zandi, S. M. (2016). On the use of Laplace’s equation for pressure and a mesh-free method for 3D simulation of nonlinear sloshing in tanks.
Ocean Engineering, 122, 54–67.
https://doi.org/10.1016/j.oceaneng.2016.06.019##
Chao, W. T., Liang, S. J., Young, C. C., & Ting, C. L. (2021). Interactions of solitary wave with a submerged step: experiments and simulations.
Water, 13(9), 1302.
https://doi.org/10.3390/w13091302##
Chen, Y. H., Hwang, W. S., & Ko, C. H. (2007). Sloshing behaviours of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations.
Earthquake Engineering & Structural Dynamics, 36(12), 1701–1717.
https://doi.org/10.1002/eqe.713##
Domínguez, J. M., Altomare, C., Gonzalez-Cao, J., & Lomonaco, P. (2019). Towards a more complete tool for coastal engineering: solitary wave generation, propagation and breaking in an SPH-based model.
Coastal Engineering Journal, 61(1), 15–40.
https://doi.org/10.1080/21664250.2018.1560682##
Domínguez, J. M., Fourtakes, G., Altomare, C., Canelas, R. B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A. J. C., Rogers, B. D., Stansby, P. K., & Gómez-Gesteira, M. (2022). State-of-the-art SPH solver DualSPHysics: from fluid dynamics to multiphysics problems.
Computational Particle Mechanics, 9(5), 867–895.
https://doi.org/10.1007/s40571-021-00404-2##
Ghafari, A., Tavakoli, M. R., Nili-Ahmadabadi, M., Teimouri, K., & Kim, K. C. (2021). Investigation of interaction between solitary wave and two submerged rectangular obstacles.
Ocean Engineering, 237, 109659.
https://doi.org/10.1016/j.oceaneng.2021.109659##
Goring, D. G. (1978) Tsunamis - the propagation of long waves onto a shelf. Pasadena, CA: California Institute of Technology.##
Hermann, A., Shojaei, A., Steglich, D., Höche, D., Zeller-Plumhoff, B., & Cyron, C. J. (2022). Combining peridynamic and finite element simulations to capture the corrosion of degradable bone implants and to predict their residual strength.
International Journal of Mechanical Sciences, 220, 107143.
https://doi.org/10.1016/j.ijmecsci.2022.107143##
Li, J., Liu, H., Gong, K., Tan, S. K., & Shao, S. (2012). SPH modeling of solitary wave fissions over uneven bottoms.
Coastal Engineering, 60, 261–275.
https://doi.org/10.1016/j.coastaleng.2011.10.006##
Lin, P., & Li, C. W. (2002). A σ-coordinate three-dimensional numerical model for surface wave propagation.
International Journal for Numerical Methods in Fluids, 38(11), 1045–1068.
https://doi.org/10.1002/fld.258##
Lo, D. C., & Young, D. L. (2004). Arbitrary Lagrangian–Eulerian finite element analysis of free surface flow using a velocity–vorticity formulation.
Journal of Computational Physics, 195(1), 175–201.
https://doi.org/10.1016/j.jcp.2003.09.019##
Love, J. S., & Tait, M. J., (2014). Linearized sloshing model for 2D tuned liquid dampers with modified bottom geometries.
Canadian Journal of Civil Engineering, 41(2), 106–117.
https://doi.org/10.1139/cjce-2013-0106##
Madsen, P. A., Fuhrman, D. R., & Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis.
Journal of Geophysical Research: Oceans, 113(C12).
https://doi.org/10.1029/2008JC004932##
Magdalena, I., Atras, M. F., Sembiring, L., Nugroho, M. A., Labay, R. S. B., & Roque, M. P. (2020). Wave Transmission by Rectangular Submerged Breakwaters.
Computation, 8, 56.
https://doi.org/10.3390/computation8020056##
Mirfatah, S. M., Boroomand, B., & Soleimanifar, E. (2019). On the solution of 3D problems in physics: From the geometry definition in CAD to the solution by a meshless method.
Journal of Computational Physics, 393, 351–374.
https://doi.org/10.1016/j.jcp.2019.05.007##
Mohapatra, S. C., Islam, H., Hallak, T. S., & Soares, C. G. (2022). Solitary wave interaction with a floating pontoon bbased on boussinesq model and CFD-based simulations.
Journal of Marine Science and Engineering, 10, 1251.
https://doi.org/10.3390/jmse10091251##
Mossaiby, F., Shojaei, A., Boroomand, B., Zaccariotto, M., & Galvanetto, U. (2020). Local Dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems.
Computer Methods in Applied Mechanics and Engineering, 362, 112856.
https://doi.org/10.1016/j.cma.2020.112856##
Motamedi, A. R., Boroomand, B., & Noormohammadi, N. (2022). A Trefftz based meshfree local method for bending analysis of arbitrarily shaped laminated composite and isotropic plates.
Engineering Analysis with Boundary Elements, 143, 237–262.
https://doi.org/10.1016/j.enganabound.2022.05.018##
Movahedian, B., Zohravi, P., Mansouri, S., & Boroomand, B. (2021). Wave propagation in two dimensional structures: An efficient solution method in time domain using exponential basis functions.
Computers & Structures, 243, 106375.
https://doi.org/10.1016/j.compstruc.2020.106375##
Nakoulima, O., Zahibo, N., Pelinovsky, E., Talipova, T., & Kurkin, A. (2005). Solitary wave dynamics in shallow water over periodic topography.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(3), 037107.
https://doi.org/10.1063/1.1984492##
Neumann, G., & Pierson, W. J. (1966) Principles of physical oceanography. Prentice Hall, New York.##
Pandit, A. R., & Biswal, K. C. (2019). Seismic control of structures using sloped bottom tuned liquid damper.
International Journal of Structural Stability and Dynamics, 19(09), 1950096.
https://doi.org/10.1142/S0219455419500962##
Paprota, M., Staroszczyk, R., & Sulisz, W. (2018). Eulerian and Lagrangian modelling of a solitary wave attack on a seawall.
Journal of Hydro-environment Research, 19, 189–197.
https://doi.org/10.1016/j.jher.2017.09.001##
Pary Abarghooei, H., & Boroomand, B. (2018). Simulating fluid and structure interaction using exponential basis functions.
Journal of Applied Fluid Mechanics, 11(3), 787–799.
https://doi.org/10.29252/jafm.11.03.28347##
Rawat, A., Mittal, V., Chakraborty, T., & Matsagar, V. (2019). Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and Euler-Lagrange methods.
Thin-Walled Structures, 134, 333–346.
https://doi.org/10.1016/j.tws.2018.10.016##
Shojaei, A., Hermann, A., Seleson, P., & Cyron, C. J. (2020). Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models.
Computational Mechanics, 66(4), 773–793.
https://doi.org/10.1007/s00466-020-01879-1##
Shojaei, A., Mossaiby, F., Zaccariotto, M., & Galvanetto, U. (2019). A local collocation method to construct Dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems.
Computer Methods in Applied Mechanics and Engineering, 356, 629–651.
https://doi.org/10.1016/j.cma.2019.07.033##
Soleimanifar, E., Boroomand, B., & Mossaiby, F. (2014). A meshless method using local exponential basis functions with weak continuity up to a desired order.
Computational Mechanics, 53(6), 1355–1374.
https://doi.org/10.1007/s00466-014-0979-3##
Tripepi, G., Aristodemo, F., Meringolo, D. D., Gurnari, L., & Filianoti, P. (2020). Hydrodynamic forces induced by a solitary wave interacting with a submerged square barrier: Physical tests and δ-LES-SPH simulations.
Coastal Engineering, 158, 103690.
https://doi.org/10.1016/j.coastaleng.2020.103690##
Xue, M. A., Chen, Y., Zheng, J., Qian, L., & Yoan, X. (2019). Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes.
Ocean Engineering, 192, 106582.
https://doi.org/10.1016/j.oceaneng.2019.106582##
Zandi, S. M., Boroomand, B., & Soghrati, S. (2012). Exponential basis functions in solution of incompressible fluid problems with moving free surfaces.
Journal of Computational Physics, 231(2), 505–527.
https://doi.org/10.1016/j.jcp.2012.06.036##
Zarruk, G. A., Cowen, E. A., Wu, T. R., & Liu, P. F. (2015). Vortex shedding and evolution induced by a solitary wave propagating over a submerged cylindrical structure.
Journal of Fluids and Structures, 52, 181–198.
https://doi.org/10.1016/j.jfluidstructs.2014.11.001##