Agostini, B., Fabbri, M., Park, J. E., Wojtan, L., Thome, J. R. & Michel, B. (2007). State of the art of high heat flux cooling technologies.
Heat Transfer Engineering, 28(4), 258-281.
https://doi.org/10.1080/01457630601117799##
Bahreini, M., Ramiar, A., & Ranjbar, A. A. (2015). Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient.
Nuclear Engineering and Design, 238-248.
https://doi.org/10.1016/j.nucengdes.2015.08.004##
Bahreini, M., Ramiar, A., & Ranjbar, A. A. (2016). Numerical Simulation of Subcooled Flow Boiling under Conjugate Heat Transfer and Microgravity Condition in a Vertical Mini Channel.
Applied Thermal Engineering, 170-185.
https://doi.org/10.1016/j.applthermaleng.2016.11.016##
Bower, J. S., & Klausner, J. F. (2006). Gravity independent subcooled flow boiling heat transfer regime. Experimental Thermal and Fluid Science. 10.1615/ICHMT.2004.IntThermSciSemin.720##
Chai, L., Xia, G., Wang, L., Zhou, M., & Cui, Z. (2013), Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections.
International Journal of Heat and Mass Transfer, 62, 741-751.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.045##
Chen, A., Lin, T. F., Ali, H. M., & Yan, W. M. (2020). Experimental study on bubble characteristics of time periodic subcooled flow boiling in annular ducts due to wall heat flux oscillation.
International Journal of Heat and Mass Transfer, 157, 119974.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119974##
Chen, C. A., Li, K. W., Lin, T. F., Li, W. K., & Yan, W. M. (2021). Study on heat transfer and bubble behavior inside horizontal annuli: Experimental comparison of R-134a, R–407C, and R-410A subcooled flow boiling.
Case Studies in Thermal Engineering, 24, 100875.
https://doi.org/10.1016/j.csite.2021.100875##
Hożejowska, S., Kaniowski, R. M., & Poniewski, M. E. (2016). Experimental investigations and numerical modeling of 2D temperature fields in flow boiling in minichannels.
Experimental Thermal and Fluid Science, 78, 18-29.
https://doi.org/10.1016/j.expthermflusci.2016.05.005##
Hsu, W. T., Lee, N., Lee, D., Kim, J., Yun, M., & Cho, H. H. (2022). Surfaces with bent micro-polymerized pillars exhibit enhanced heat transfer during subcooled flow boiling.
International Journal of Heat and Mass Transfer, 182, 121941.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121941##
Huang, P., & Pan, M. (2021). Secondary heat transfer enhancement design of variable cross-section microchannels based on entrancy analysis.
Renewable and Sustainable Energy Reviews, 141, 110834.
https://doi.org/10.1016/j.rser.2021.110834##
Huang, P. G. D., Zhong, X., & Pan, M. (2020). Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section.
Chemical Engineering and Processing - Process Intensification, 147, 107769.
https://doi.org/10.1016/j.cep.2019.107769##
Kandlikar, S. G. (2012). History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review.
ASME Journal of Heat and Mass Transfer, 134(3), 034001.
https://doi.org/10.1115/1.4005126##
Kennedy, J. E., Roach Jr, G. M., Dowling, M. F., Abdel-Khalik, S. I., Ghiaasiaan, S. M., Jeter, S. M., & Quershi, Z. H. (2000), The onset of flow instability in uniformly heated horizontal microchannels.
Journal of Heat and Mass Transfer, 122(1), 118-125.
https://doi.org/10.1115/1.521442##
Kim, S. J., McKrell, T., Buongiorno, J., & Hu, L. (2010). Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure.
Nuclear Engineering and Design, 240, 1186-1194.
https://doi.org/10.1016/j.nucengdes.2010.01.020##
Lee, J., O'Neill, L. E., Lee, S., & Mudawar, I. (2019). Experimental and computational investigation on two-phase flow and heat transfer of highly subcooled flow boiling in vertical upflow.
International Journal of Heat and Mass Transfer, 136, 1199-1216.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.046##
Lee, W. H. (1980). Pressure iteration scheme for two-phase flow modeling. Multiphase Transport: Fundamentals, Reactor Safety, Applications, 407-432.##
Li, Y., Xia, G., Jia, Y., Cheng, Y., & Wang, J. (2017). Experimental investigation of flow boiling performance in microchannels with and without triangular cavities–A comparative study. International Journal of Heat and Mass Transfer, 108, 1511-1526.##
Li, Y. F., Xia, G. D., Ma, D. D., Yang, J. L., & Li, W. (2020). Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins. International Journal of Heat and Mass Transfer, 148, 119036.##
Manda, U., Peles, Y., & Putnam, S. (2021). Comparison of heat transfer characteristics of flow of supercritical carbon dioxide and water inside a square microchannel. 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), 1207-1213. https://doi.org/10.1109/ITherm51669.2021.9503192##
Manda, U., Parahovnik, A., & Peles, Y. (2022). Thermoacoustic waves and piston effect inside a microchannel with carbon dioxide near critical conditions.
Thermal Science and Engineering Progress, 36, 101528.
https://doi.org/10.1016/j.tsep.2022.101528##
Manda, U., Parahovnik, A., & Peles, Y. (2020).
Theoretical investigation of boundary layer behavior and heat transfer of supercritical carbon dioxide (Sco2) in a microchannel. Itherm-2020 conference, Orlando, FL, USA, 888-892.
https://doi.org/10.1109/ITherm45881.2020.9190408##
Nedaei, M., Motezakker, A. R., Zeybek, M. C., Sezen, M., Ozaydin, I. G., & Kosar, A. (2017). Subcooled flow boiling heat transfer enhancement using polyperfluorodecylacrylate (pPFDA) coated microtubes with different coating thicknesses.
Experimental Thermal and Fluid Science, 86, 130-140.
https://doi.org/10.1016/j.expthermflusci.2017.04.008##
Phan, H. T., Caney, N., Marty, P., Colasson, S., & Gavillet, J. (2011). Flow boiling of water in a minichannel: The effects of surface wettability on two-phase pressure drop.
Applied Thermal Engineering, 31, 1894-1905.
https://doi.org/10.1016/j.applthermaleng.2011.02.036##
Piasecka, M. (2012). An application of enhanced heating surface with mini-reentrant cavities for flow boiling research in minichannels. Heat Mass Transfer. https://doi.org/10.1007/s00231-012-1082-y##
Piasecka, M. (2014). The use of enhanced surface in flow boiling heat transfer in a rectangular minichannel.
Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion, 231-255.
https://doi.org/10.1080/08916152.2013.782374##
Ramasamy, N. S., Kumar, P., Wangaskar, B., Khandekar, S., & Maydanik, Y. F. (2018), Miniature ammonia loop heat pipe for terrestrial applications: Experiments and modeling.
International Journal of Thermal Sciences, 124, 263-278.
https://doi.org/10.1016/j.ijthermalsci.2017.10.018##
Rena, T., Zhub, Z., Shi, J., Yana, C., & Zhanga, R. (2020). Experimental study on bubble sliding for upward subcooled flow boiling in a narrow rectangular channel.
International Journal of Heat and Mass Transfer, 119489.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119489##
Şişman, Y., Khalili Sadaghiani, A., Khedir, R., Brozak, M., Karabacak, T., & Koşar, A. (2016). Subcooled flow boiling over microstructured plates in rectangular minichannels.
Nanoscale and Microscale Thermophysical Engineering, 20(3-4), 173-190.
https://doi.org/10.1080/15567265.2016.1248584##
Sugrue, R., Buongiorno, J., & McKrell, T. (2014). An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure.
Nuclear Engineering and Design, 182-188.
https://doi.org/10.1016/j.nucengdes.2014.08.009##
Wang, Y., & Wu, J. M. (2015). Numerical simulation on single bubble behavior during Al2O3/H2O nanofluids flow boiling using Moving Particle Simi-implicit method.
Progress in Nuclear Energy, 85, 130-139.
https://doi.org/10.1016/j.pnucene.2015.06.017##