Ding, G., Chen, J., Li, Z., Cai, X., & Ji, Y. (2022). An investigation on the bubbly flow of a Venturi channel based on the population balance model.
The Canadian Journal of Chemical Engineering, 100(7), 1652-1664.
https://doi.org/10.1002/cjce.24258##
Ding, G., Li, Z., Chen, J., & Cai, X. (2021). An investigation on the bubble transportation of a two-stage series venturi bubble generator.
Chemical Engineering Research and Design, 174, 345-356.
https://doi.org/10.1016/j.cherd.2021.08.022##
Huang, J., Sun, L., Du, M., Liang, Z., Mo, Z., Tang, J., & Xie, G. (2020). An investigation on the performance of a micro-scale Venturi bubble generator.
Chemical engineering journal, 386, 120980.
https://doi.org/10.1016/j.cej.2019.02.068##
Huang, J., Sun, L., Du, M., Mo, Z., & Zhao, L. (2018). A visualized study of interfacial behavior of air–water two-phase flow in a rectangular Venturi channel.
Theoretical and Applied Mechanics Letters, 8(5), 334-344.
https://doi.org/10.1016/j.taml.2018.05.004##
Huang, J., Sun, L., Mo, Z., Feng, Y., Bao, J., & Tang, J. (2021). Experimental investigation on the effect of throat size on bubble transportation and breakup in small Venturi channels.
International Journal of Multiphase Flow, 142, 103737.
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103737##
Huang, J., Sun, L., Mo, Z., Liu, H., Du, M., Tang, J., & Bao, J. (2019). A visualized study of bubble breakup in small rectangular Venturi channels.
Experimental and Computational Multiphase Flow, 1(3), 177-185.
https://doi.org/10.1007/s42757-019-0018-x##
Kurata, K., Taniguchi, H., Fukunaga, T., Matsuda, J., & Higaki, H. (2007). Development of a compact microbubble generator and its usefulness for three-dimensional osteoblastic cell culture.
Journal of Biomechanical Science and Engineering, 2(4), 166-177.
https://doi.org/10.1299/jbse.2.166##
Lee, C. H., Wongwises, S., Jerng, D. W., & Ahn, H. S. (2021). Experimental study on breakup mechanism of microbubble in 2D channel.
Case Studies in Thermal Engineering, 28, 101523.
https://doi.org/10.1016/j.csite.2021.101523##
Levitsky, I., Tavor, D., & Erenburg, V. (2022). A new bubble generator for creation of large quantity of bubbles with controlled diameters.
Experimental and Computational Multiphase Flow, 4(1), 45-51.
https://doi.org/10.1007/s42757-020-0085-z##
Li, J., Song, Y., Yin, J., & Wang, D. (2017). Investigation on the effect of geometrical parameters on the performance of a venturi type bubble generator.
Nuclear Engineering and Design, 325, 90-96.
https://doi.org/10.1016/j.nucengdes.2017.10.006##
Liu, X., Lao, L., & Falcone, G. (2020). A comprehensive assessment of correlations for two-phase flow through Venturi tubes.
Journal of Natural Gas Science and Engineering, 78, 103323.
https://doi.org/10.1016/j.jngse.2020.103323##
Liu, Y., Zhou, Y., Wang, T., Pan, J., Zhou, B., Muhammad, T., Zhou, C., & Li, Y. (2019). Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality.
Journal of Cleaner Production, 222, 835-843.
https://doi.org/10.1016/j.jclepro.2019.02.208##
Roy, S. M., Machavaram, R., Pareek, C., & Mal, B. (2021). Diversified aeration facilities for effective aquaculture systems—a comprehensive review.
Aquaculture International, 29(3), 1181-1217.
https://doi.org/10.1007/s10499-021-00685-7##
Sadatomi, M., Kawahara, A., Matsuura, H., & Shikatani, S. (2012). Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube.
Experimental Thermal and Fluid Science, 41, 23-30.
https://doi.org/10.1016/j.expthermflusci.2012.03.002##
Sakamatapan, K., Mesgarpour, M., Mahian, O., Ahn, H. S., & Wongwises, S. (2021). Experimental investigation of the microbubble generation using a venturi-type bubble generator.
Case Studies in Thermal Engineering, 27, 101238.
https://doi.org/10.1016/j.csite.2021.101238##
Song, Y., Wang, D., Yin, J., Li, J., & Cai, K. (2019). Experimental studies on bubble breakup mechanism in a venturi bubble generator.
Annals of Nuclear Energy, 130, 259-270.
https://doi.org/10.1016/j.anucene.2019.02.020##
Sun, L., Mo, Z., Zhao, L., Liu, H., Guo, X., Ju, X., & Bao, J. (2017). Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR.
Annals of Nuclear Energy, 109, 69-81.
https://doi.org/10.1016/j.anucene.2017.05.015##
Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., & Kobayashi, D. (2011). Development of microbubble aerator for waste water treatment using aerobic activated sludge.
Chemical Engineering Science, 66(14), 3172-3179.
https://doi.org/10.1016/j.ces.2011.02.043##
Verma, A. K., Bhunia, P., Dash, R. R., Tyagi, R. D., Surampalli, R. Y., & Zhang, T. C. (2015). Effects of physico‐chemical pre‐treatment on the performance of an upflow anaerobic sludge blanket (UASB) reactor treating textile wastewater: application of full factorial central composite design.
The Canadian Journal of Chemical Engineering, 93(5), 808-818.
https://doi.org/10.1002/cjce.22168##
Wang, X., Shuai, Y., Zhang, H., Sun, J., Yang, Y., Huang, Z., Jiang, B., Liao, Z., Wang, J., & Yang, Y. (2021). Bubble breakup in a swirl-venturi microbubble generator.
Chemical Engineering Journal, 403, 126397.
https://doi.org/10.1016/j.cej.2020.126397##
Wang, X., Shuai, Y., Zhou, X., Huang, Z., Yang, Y., Sun, J., Zhang, H., Wang, J., & Yang, Y. (2020). Performance comparison of swirl-venturi bubble generator and conventional venturi bubble generator.
Chemical Engineering and Processing-Process Intensification, 154, 108022.
https://doi.org/10.1016/j.cep.2020.108022##
Wilson, D. A., Pun, K., Ganesan, P. B., & Hamad, F. (2021). Geometrical optimization of a venturi-type microbubble generator using CFD simulation and experimental measurements.
Designs, 5(1), 4.
https://doi.org/10.3390/designs5010004##
Yin, J., Li, J., Li, H., Liu, W., & Wang, D. (2015). Experimental study on the bubble generation characteristics for an venturi type bubble generator.
International Journal of Heat and Mass Transfer, 91, 218-224.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.076##
Zhang, L., Liu, J., Liu, C., Zhang, J., & Yang, J. (2016). Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment.
Water Science and Technology, 74(1), 138-146.
https://doi.org/10.2166/wst.2016.187##
Zhao, L., Mo, Z., Sun, L., Xie, G., Liu, H., Du, M., & Tang, J. (2017). A visualized study of the motion of individual bubbles in a venturi-type bubble generator.
Progress in Nuclear Energy, 97, 74-89.
https://doi.org/10.1016/j.pnucene.2017.01.004##
Zhao, L., Sun, L., Mo, Z., Du, M., Huang, J., Bao, J., Tang, J., & Xie, G. (2019). Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles.
International Journal of Multiphase Flow, 114, 192-206.
https://doi.org/10.1016/j.ijmultiphaseflow.2019.02.003##
Zhao, L., Sun, L., Mo, Z., Tang, J., Hu, L., & Bao, J. (2018). An investigation on bubble motion in liquid flowing through a rectangular Venturi channel.
Experimental Thermal and Fluid Science, 97, 48-58.
https://doi.org/10.1016/j.expthermflusci.2018.04.009##