Aboud, D. G., & Kietzig, A. M. (2018). On the oblique impact dynamics of drops on superhydrophobic surfaces. Part I: sliding length and maximum spreading diameter.
Langmuir, 34(34), 9879-9888.
https://doi.org/10.1021/acs.langmuir.8b02034##
Almohammadi, H., & Amirfazli, A. (2017a). Understanding the drop impact on moving hydrophilic and hydrophobic surfaces.
Soft Matter, 13(10), 2040-2053.
https://doi.org/10.1039/C6SM02514E##
Antonini, C., Villa, F., & Marengo, M. (2014). Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps.
Experiments in Fluids, 55(4), 1-9.
https://doi.org/10.1007/s00348-014-1713-9##
Azadi, E., & Taeibi Rahni, M. (2023). A three-dimensional mass-conserved multiphase lattice Boltzmann flux solver for incompressible flows with large density and viscosity ratios. Accepted to be Published by Advances in Applied Mathematics and Mechanics.##
Benther, J. D., Pelaez-Restrepo, J. D., Stanley, C., & Rosengarten, G. (2021). Heat transfer during multiple droplet impingement and spray cooling: Review and prospects for enhanced surfaces.
International Journal of Heat and Mass Transfer, 178, 121587.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121587##
Buksh, S., Almohammadi, H., Marengo, M., & Amirfazli, A. (2019). Spreading of low-viscous liquids on a stationary and a moving surface.
Experiments in Fluids, 60(4), 1-12.
https://doi.org/10.1007/s00348-019-2715-4##
Carrolo, G., Ribeiro, D., Barata, J. M., & Silva, A. R. (2019).
Aerodynamic breakup of a single droplet due to a crossflowed airstream. AIAA Scitech 2019 Forum, 0628.
https://doi.org/10.2514/6.2019-0628##
Chen, R. H., & Wang, H. W. (2005). Effects of tangential speed on low-normal-speed liquid drop impact on a non-wettable solid surface.
Experiments in Fluids, 39(4), 754-760.
https://doi.org/10.1007/s00348-005-0008-6##
Cui, J., Chen, X., Wang, F., Gong, X., & Yu, Z. (2009). Study of liquid droplets impact on dry inclined surface.
Asia‐Pacific Journal of Chemical Engineering, 4(5), 643-648.
https://doi.org/10.1002/apj.309##
Cunha, N., Ribeiro, D., Barata, J. M., & Silva, A. R. (2018).
The splash deposition transition limits of a biofuel droplet wall impact with a and without crossflow. 14th International Conference on Liquid Atomization and Spray Systems 2020. ILASS Europe, Institute for Liquid Atomization and Spray Systems. ICLASS 2018-14th International Conference on Liquid Atomization and Spray Systems 2020. ILASS Europe, Institute for Liquid Atomization and Spray Systems. Retrieved from
http://hdl.handle.net/10400.6/12166##
Dai, B., Liu, C., Liu, S., Wang, D., Wang, Q., Zou, T., & Zhou, X. (2023). Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery.
Applied Thermal Engineering, 219, 119570.
https://doi.org/10.1016/j.applthermaleng.2022.119570##
Eyo, A. E., Ogbonna, N., & Ekpenyong, M. E. (2012). Comparison of the exact and approximate values of certain parameters in laminar boundary layer flow using some velocity profiles.
Journal of Mathematics Research, 4(5), 17.
https://doi.org/10.5539/jmr.v4n5p17##
Fakhari, A., & Bolster, D. (2017). Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios.
Journal of Computational Physics, 334, 620-638.
https://doi.org/10.1016/j.jcp.2017.01.025##
Ferrao, I., Ribeiro, D., Barata, J. M., & Silva, A. R. (2019).
Comparative study of droplet impact onto sloped surface versus a droplet impact onto a surface with a crossflow. AIAA Scitech 2019 Forum, 0629.
https://doi.org/10.2514/6.2019-0629##
Ferrao, I., Vasconcelos, D., Ribeiro, D., Silva, A., & Barata, J. (2020). A study of droplet deformation: The effect of crossflow velocity on jet fuel and biofuel droplets impinging onto a dry smooth surface.
Fuel, 279, 118321.
https://doi.org/10.1016/j.fuel.2020.118321##
Hao, J., Lu, J., Lee, L., Wu, Z., Hu, G., & Floryan, J. M. (2019). Droplet splashing on an inclined surface.
Physical Review Letters, 122(5), 054501.
https://doi.org/10.1103/PhysRevLett.122.054501##
Li, Y., Niu, X. D., Wang, Y., Khan, A., & Li, Q. Z. (2019). An interfacial lattice Boltzmann flux solver for simulation of multiphase flows at large density ratio.
International Journal of Multiphase Flow, 116, 100-112.
https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.006##
Lunkad, S. F., Buwa, V. V., & Nigam, K. P. (2007). Numerical simulations of drop impact and spreading on horizontal and inclined surfaces.
Chemical Engineering Science, 62(24), 7214-7224.
https://doi.org/10.1016/j.ces.2007.07.036##
Mohammad Karim, A. (2023). Physics of droplet impact on various substrates and its current advancements in interfacial science: A review. Journal of Applied Physics, 133(3).
https://doi.org/10.1063/5.0130043##
Moreira, A. N., Moita, A. S., & Panao, M. R. (2010). Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?
Progress in Energy and Combustion Science, 36(5), 554-580.
https://doi.org/10.1016/j.pecs.2010.01.002##
Niu, X. D., Li, Y., Ma, Y. R., Chen, M. F., Li, X., & Li, Q. Z. (2018). A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows.
Physics of Fluids, 30(1), 013302.
https://doi.org/10.1063/1.5004724##
Pasandideh-Fard, M., Bhola, R., Chandra, S., & Mostaghimi, J. (1998). Deposition of tin droplets on a steel plate: simulations and experiments.
International Journal of Heat and Mass Transfer, 41(19), 2929-2945.
https://doi.org/10.1016/S0017-9310(98)00023-4##
Pasandideh-Fard, M., Qiao, Y. M., Chandra, S., & Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface.
Physics of Fluids, 8(3), 650-659.
https://doi.org/10.1063/1.868850##
Pereira, F. L. (2019). Effect of crossflow variation on impacting droplets. [Doctoral dissertation, Universidade da Beira Interior]. Portugal.##
Sahoo, N., Khurana, G., Harikrishnan, A. R., Samanta, D., & Dhar, P. (2020). Post impact droplet hydrodynamics on inclined planes of variant wettabilities.
European Journal of Mechanics-B/Fluids, 79, 27-37.
https://doi.org/10.1016/j.euromechflu.2019.08.013##
Shusheng, Z., Hao, L., Li-Zhi, Z., Saffa, R., Zafer, U., & Huaguan, Z. (2020). A lattice Boltzmann simulation of oblique impact of a single rain droplet on super-hydrophobic surface with randomly distributed rough structures.
International Journal of Low-Carbon Technologies, 15(3), 443-449.
https://doi.org/10.1093/ijlct/ctaa004##
Wang, X., Xu, B., Chen, Z., Del Col, D., Li, D., Zhang, L., & Cao, Q. (2022). Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
Advances in Colloid and Interface Science, 102684.
https://doi.org/10.1016/j.cis.2022.102684##
Wang, Y., Shu, C., & Yang, L. M. (2015). An improved multiphase lattice Boltzmann flux solver for three-dimensional flows with large density ratio and high Reynolds number.
Journal of Computational Physics, 302, 41-58.
https://doi.org/10.1016/j.jcp.2015.08.049##
Yang, L., Shu, C., Chen, Z., Wang, Y., & Hou, G. (2021). A simplified lattice Boltzmann flux solver for multiphase flows with large density ratio.
International Journal for Numerical Methods in Fluids, 93(6), 1895-1912.
https://doi.org/10.1002/fld.4958##
Yin, C., Wang, T., Che, Z., Jia, M., & Sun, K. (2018). Oblique impact of droplets on microstructured superhydrophobic surfaces.
International Journal of Heat and Mass Transfer, 123, 693-704.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.060##
Zhan, H., Lu, C., Liu, C., Wang, Z., Lv, C., & Liu, Y. (2021). Horizontal motion of a superhydrophobic substrate affects the drop bouncing dynamics.
Physical Review Letters, 126(23), 234503.
https://doi.org/10.1103/PhysRevLett.126.234503##
Zhao, H., Han, X., Li, J., Li, W., Huang, T., Yu, P., & Wang, L. (2022). Numerical investigation of a droplet impacting obliquely on a horizontal solid surface.
Physical Review Fluids, 7(1), 013601.
https://doi.org/10.1103/PhysRevFluids.7.013601##