Arthurs, D., & Ziada, S. (2013). Effect of nozzle thickness on the self-excited impinging planar jet. Journal of Fluids&Structures, 44(7), 1-16.##
Bai, X., Cao, P. J., Li, Q. L., & Cheng, P. (2022). Generation and transmission mechanisms of disturbance inside injector during self-pulsation.
Acta Aeronautica et Astronautica Sinica, 43, 126523.
https://doi.org/10.7527/S10006893.2021.26523.##
Feng, C., Wang, Y., & Kong, L. R. (2022). Effects of pulsating fluid at nozzle inlet on the output characteristics of common and self‐excited oscillation nozzle.
Energy Science & Engineering, 10, 3189-3200.
https://doi.org/10.1002/ese3.1213##
Li, D., Kong, Y., Ding, X. L., Wang, X. C., & Liu, W. C. (2017). Effects of feeding pipe diameter on the performance of a jet-driven Helmholtz oscillator generating pulsed waterjets.
Journal of Mechanical Science and Technology, 31(3), 1203-1212.
https://doi.org/10.1007/s12206-017-0219-9.##
Li, D., Kang, Y., Ding, X. L., Wang, X. H., & Fang, Z. L. (2016). Effects of area discontinuity at nozzle inlet on the characteristics of high speed self-excited oscillation pulsed waterjets.
Experimental Thermal and Fluid Science, 79, 254-265.
https://doi.org/10.1016/j.expthermflusci.2016.07.013##
Li, D. Z., Kang, Y., Shi, H. Q., Hu, Y., Liu, Q., Li, H. C., Hu, J. C., & Li, J. M. (2022). Cavitation cloud dynamic characteristics of dual-chamber self-excited oscillatory waterjet.
Korean Journal of Chemical Engineering, 39(12), 3214-3226.
https://doi.org/10.1007/s11814-022-1258-1##
Shi, D. Y., Xing, Y. L., Wang, L. F., & Chen, Z. (2022). Numerical simulation and experimental research of cavitation jets in dual-chamber self-excited oscillating pulsed nozzles.
Shock and Vibration,
https://doi.org/10.1155/2022/1268288.##
Zhang, F. B., & Wang, S. (2020). Numerical analysis for jet impingement and heat transfer law of self-excited pulsed nozzle. ISIJ International, 60, 2485-2492.##
Zhao, F. J., Wang, X. L., Xu, W., Zhao, Y. Y., Zhao, G. H., & Zhu, H. (2021). Study on different parameters of the self-excited oscillation nozzle for cavitation effect under multiphase mixed transport conditions.
Journal of Marine Science and Engineering, 9, 1159.
https://doi.org/10.3390/jmse9111159.##
Gao, Y. Q., Zhou, S. Q., Qi, L., & Yin, Q. Q. (2022). Investigation on mechanism breaking fuel jet of self-excited oscillation pulse nozzle.
Journal of Jilin University (Engineering and Technology Edition).
https://doi.org/10.13229/j.cnki.jdxbgxb20220960.##
Li, G. S., Zhang, D. B., Huang, Z. W., Niu, J. L., Zhang, W. W., Gao, G. Q., & An, S. L. (2003). Self-excited oscillating water injection: mechanisms and experiments.
Petroleum Science and Technology, 21, 145-155.
https://doi.org/10.1081/LFT-120016938.##
Li, H. S., Liu, S. Y., Jia, J. G., Wang, F. C., & Guo, C. W. (2020). Numerical simulation of rock-breaking under the impact load of self-excited oscillating pulsed waterjet.
Tunnelling and Underground Space Technology, 96, 103179.
https://doi.org/10.1016/j.tust.2019.103179.##
Lai, S., & Liao, Z. (2013). The theory and experimental study of the self-excited oscillation pulsed jet nozzle (Pipeline Pulsed Flow Generator).
Natural Resources, 4(5), 395-403.
https://doi.org/10.4236/nr.2013.45049.##
Liao, Z., Li, J., Chen, D., Deng, X., Tang, C., & Zhang, F. H. (2003). Theory and experimental study of the self-excited oscillation pulsed jet nozzle.
Chinese Journal of Mechanical Engineering, 16(4), 379-383.
https://doi.org/10.3901/CJME.2003.04.379.##
Nan, N., Si, D. Q., & Hu, G. H. (2018). Nanoscale cavitation in perforation of cellular membrane by shock-wave induced nanobubble collapse.
The Journal of Chemical Physics, 149, 074902.
https://doi.org/10.1063/1.5037643.##
Liu, S., Liu, Z., Cui, X. X., & Jiang, H. X. (2014). Rock breaking of conical cutter with assistance of front and rear water jet.
Tunnellling and Underground Space Technology 42, 78-86.
https://doi.org/10.1016/j.tust.2014.02.002.##
Zhang, S., Fu, B. W., & Sun, L. (2021). Investigation of the Jet characteristics and pulse mechanism of self-excited oscillating pulsed jet nozzle.
Processes, 9, 1423.
https://doi.org/10.3390/pr9081423.##
Thomas, J. K. (2005). An ovrview of waterjet fundamentals and applications. Waterjet Technology Association, St. Louis.##
Adhikari, U., Goliaei, A., & Berkowitz, M. L. (2015). Mechanism of membrane poration by shock wave induced nanobubble collapse: A molecular dynamics study.
Journal of Physical Chemistry B 119, 6225-6234.
https://doi.org/10.1021/acs.jpcb.5b02218.##
Wang, X. C., Li, Y. Q., Hu, Y., Ding, X. L., Xiang, M. J., & Li, D. (2020). An experimental study on the jet pressure performance of organ-Helmholtz (o-h), self-excited oscillating nozzles.
Energies, 13(2), 367.
https://doi.org/10.3390/en13020367.##
Wang, Z. H., Hu, Y. N., Rao, C. G., & Deng, X. G. (2017). Numerical analysis of cavitation effects of self-excited oscillation pulse nozzles and jet forms.
China Mechanical Engineering, 28(13), 1535-1541.
https://doi.org/10.3969/j.issn.1004-132X.2017.13.004.##
Xu, W., Zhu, R. S., Wang, J., Fu, Q., Wang, X. L., Zhao, Y. Y., & Zhao, G. H. (2022). Molecular dynamics simulations of the distance between the cavitation bubble and benzamide wall impacting collapse characteristics.
Journal of Cleaner Production, 352, 131633.
https://doi.org/10.1016/j.jclepro.2022.131633.##
Wu, R. Z., Yang, F., Pei, K. C., & Pan, Y. (2022). Structure optimization of self-oscillation pulse nozzle based on multi-objective particle swarm optimization.
Coal Mine Machinery, 43 (4), 114-116.
https://doi.org/10.13436/j.mkjx.202204036.##
Xiang, M. J., Wang, X. C., Li, D., Chen, H., & Qian, L. (2020). Effects of Helmholtz upper nozzle outlet structure on jet oscillation characteristics.
Journal of Vibration and Shock, 39(7), 74-80.
https://doi.org/10.13465/j.enki.jvs.2020.07.011.##
Zhang, X. J., Li, X. Q., Nie, S. L., Wang, L. P., & Dong, J. H. (2021). Study on velocity and pressure characteristics of self-excited oscillating nozzle.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 5, 43.
https://doi.org/10.1007/s40430-020-02717-4.##
Lu, Y., Tang, J., Ge, Z., Xia, B., & Liu, Y. (2013). Hard rock drilling technique with abrasive water jet assistance,
International Journal of Rock Mechanics and Mining Sciences 60, 47-56.
https://doi.org/10.1016/j.ijrmms.2012.12.021.##
Qu, Y. P., & Chen, S. Y. (2017). Orthogonal experimental research on the structural parameters of a self-excited pulsed cavitation nozzle.
European Journal of Mechanics B/Fluids. 65, 179-183.
https://doi.org/10.1016/j.euromechflu.2017.03.01.##
Lu, Y. Y., Li, X. H., &bYang, L. (2004). Effects of gas content in fluid on oscillating frequencies of self-excited oscillation water jets.
Journal of Fluids Engineering, 126(6), 1058-1061.
https://doi.org/10.1115/1.1839925.##
Wang, Y., & Chen, X. Z. (2022). Evaluation of wind loads on high-rise buildings at various angles of attack by wall-modeled large-eddy simulation.
Journal of Wind Engineering and Industrial Aerodynamics, 229, 105160.
https://doi.org/10.1016/j.jweia.2022.105160.##
Yu, Z. X., Wang, Z. M., Lei, C. B., Zhou, Y. D., & Qiu, X. Q. (2022). Numerical simulation on internal flow field of a self-excited oscillation pulsed jet nozzle with back-flow.
Mechanical Science and Technology for Aerospace Engineering, 41(7), 998-1002.
https://doi.org/10.13433/j.enki.1003-8728.20200437.##
Zhang, Y. Z., Guo, W. Z., Sun, X. H., Shi, J. F., Xue, J. H., & Wang, L. (2022). Structure optimization of mine self-excited oscillation Nozzle based on CFD.
Mining Technology, 22 (3), 197-200.
https://doi.org/10.13828/j.cnki.ckjs.2022.03.051.##
Wang, Z. H., Hu, Y. N., Chen, S., Zhou, L., Xu, W. X., & Lien, F. S. (2020). Investigation of self-excited oscillation chamber cavitation effect with special emphasis on wall shape.
Transaction of the Canadian Society for Mechanical Engineering, 44, 244-255.
https://doi.org/10.1016/j.oceaneng.2022.113039.##
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004). A two-phase flow model for predicting cavitation dynamics. International Conference on Multiphase Flow, Yokohama, Japan.##