Cameron, B., & Makris, N. (2005).
Viscous heating of fluid dampers under wind and seismic loading: experimental studies, mathematical modeling and design formulae. Earthquake Engineering Research Center Rep. _o. EERC 2006-01.
https://doi.org/10.13140/RG.2.2.34019.35362##
Carreau, P. J. (1972). Rheological equations from molecular network theories.
Transactions of the Society of Rheology, 16(1), 99–128.
https://doi.org/10.1122/1.549276##
Clearco, Products (2023a). Rhealogical behavior of silicone fluids under shear. Bensalem, PA, United States.##
Clearco, Products (2023b). Compressibility at high pressures of various clearco silicone fluids. Bensalem, PA, United States.##
De Domenico, D., & Hajirasouliha, I. (2021). Multi-level performance-based design optimisation of steel frames with nonlinear viscous dampers.
Bulletin of Earthquake Engineering, 19(12), 5015–5049.
https://doi:10.1007/s10518-021-01152-7.##
Dong, B., Sause, R., & Ricles, J. M. (2022). Modeling of nonlinear viscous damper response for analysis and design of earthquake-resistant building structures.
Bulletin of Earthquake Engineering, 20, 1841–1864.
https://doi.org/10.1007/s10518-021-01306-7.##
Frings, C., & De LA Liera, J. C., (2011, July). Multiphysics modeling experimental behaviour of viscous damper. 8th International Conference on Structural Dynamics, EURODYN2011, 4-6 Leuven, Belgium.##
Hou, C. Y., Hsu, D. S., Lee, Y. F., Chen, H. Y., & Lee, J. D. (2007). Shear thinning effects in annular orifice viscous fluid dampers.
Journal of the Chinese Institute of Engineers, 30(2), 275-287.
https://doi.org/10.1080/02533839.2007.9671254##
Hou, C. Y. (2011). Behaviour explanation and a new model for nonlinear viscous fluid dampers with a simple annular orifice.
Archive of Applied Mechanics, 82(1), 1–12.
https://doi.org/10.1007/s00419-011-0534-z##
Jiao, S., Tian, J., Zheng, H., & Hua, H. (2016). Modeling of a hydraulic damper with shear thinning fluid for damping mechanism analysis.
Journal of Vibration and Control, 23(20), 3365–3376.
https://doi.org/10.1177/1077546316629264##
Kanani, K. M., O’Neill, L. B. W., Paneroa, R., Sang-Heon Shima, L., Benedettib, R., & Jeanloza, R. (2004). Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle
. Earth and Planetary Science Letters 223, 381 – 393.
https://doi.org/10.1016/j.epsl.2004.04.033.##
Konstantinidis, D., Makris, N., & Kelly, J. M. (2015). In-situ condition assessment of seismic fluid dampers: Experimental studies and challenges.
Meccanica 50(2), 323–340.
https://doi.org/10.1007/s11012-014-9882-4.##
Kumar, K. A., Ramana Reddy, J. V., Sugunamma, V., & Sandeep, N. (2016). dual solutions for thermo diffusion and diffusion thermo effects on 3D MHD casson fluid flow over a stretching surface.
Research Journal of Pharmacy and Technology, 8 (9), 435-443. ISSN 0974-360X,
https://doi/10.5958/0974-360X.2016.00227.4.##
Kumar, K. A, Sugunamma, V., & Sandeep, N. (2018a). Impact of non-linear radiation on MHD non-aligned stagnation point flow of micropolar fluid over a convective surface.
Journal of Non-Equilibrium Thermodynamics, 43(4), 327-345.
https://doi.org/10.1515/jnet-2018-0022.##
Kumar, K. A., Sugunamma, V., & Sandeep, N. (2020). Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet.
Journal of Thermal Analysis and Calorimetry 140, 2377–2385.
https://doi.org/10.1007/s10973-019-08977-0##
Kumar, K. A., Sugunamma, V., & Sandeep, N. (2019). Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink.
Scientific Report 9, 14706.
https://doi.org/10.1038/s41598-019-51242-5##
Kumar, K. A., Venkata Ramudu, A. C., Sugunamma, V., & Sandeep, N. (2022a). Effect of non-linear thermal radiation on MHD Casson fluid flow past a stretching surface with chemical reaction.
International Journal of Ambient Energy, 43(1), 8400-8407,
https://doi.org/10.1080/01430750.2022.2097947.##
Kumar, K. A., Ramana Reddy, J. V., Sugunamma, V., & Sandeep, N. (2018b). Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink.
Alexandria Engineering Journal, (57), 1, 435-443, ISSN 1110-0168,
https://doi.org/10.1016/j.aej.2016.11.013.##
Kumar, K. A., Sugunamma. V., & Sandeep, N. (2022b). Influence of variable viscosity on 3-D MHD radiative cross nanofluid flow over a biface region. Waves in Random and Complex Media. https://doi: 10.1080/17455030.2022.2104953##
Lin, Y. Y., Chang, K. C., & Chen C. Y. (2008). Direct displacement-based design for seismic retrofit of existing buildings using nonlinear viscous dampers.
Bulletin of Earthquake. Engineering, 6(3) 535-552.
https://doi.org/10.1007/s10518-008-9062-9.##
Lu, Z., Wang, Z., Zhou, Y., & Lu, X. (2018). Nonlinear dissipative devices in structural vibration control: A review.
Journal of Sound and Vibration, 423, 18–49.
https://doi.org/10.1016/j.jsv.2018.02.052.##
Martínez-Rodrigo, M., Lavado, D. J., & Museros, P. (2010). Dynamic performance of existing high-velocity railway bridges under resonant conditions retrofitted with fluid viscous dampers.
Engineering Structures, 32(3), 808–828.
https://doi.org/10.1016/j.engstruct.2009.12.008.##
Mousavi, H., Sabbagh Yazdi, S. R., & Almohammad-Albakkar, M. (2022). A novel method for efficient design of frame structures equipped with nonlinear viscous dampers by using computational results of cylindrical friction damper, Australian Journal of Structural Engineering, https://doi: 10.1080/13287982.2022.2088055.##
Narkhede, D., I., & Sinha, R. (2014). Behaviour of nonlinear fluid viscous dampers for control of shock vibrations.
Journal of Sound and Vibration, 333(1), 80–98.
https://doi.org/10.1016/j.jsv.2013.08.041.##
Plymate, T. G., & Stout. J. H. (1989). A five-parameter temperature-corrected murnaghan equation for P-V-T surfaces.
Journal of Geophysical Research, 94(7), 9477-9483.
https://doi.org/10.1029/JB094iB07p09477.##
Yasuda, K. (1979).
Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. [Doctoral thesis, MIT, Cambridge], UK.
http://hdl.handle.net/1721.1/16043##
Ras, A., & Boumechra, N. (2014). Study of nonlinear fluid viscous dampers behaviour in seismic steel structures design.
Arabian Journal for Sciences and. Engineering, 39(12) 8635e8648.
https://doi.org/10.1007/s13369-014-1460-5.##
Ras, A., & Boumechra, N. (2016). Seismic energy dissipation study of linear fluid viscous dampers in steel structure design.
Alexandria Engineering Journal, 55, 2821–2832.
https://doi.org/10.1016/j.aej.2016.07.012.##
Ras, A. (2015). Etude du comportement des structures en acier sous sollicitations sismiques contreventées par amortisseurs à fluides visqueux. [Doctoral dissertation in civil engineering, University of Tlemcen].##
Ras, A., & Boumechra, N. (2017). Dissipation’s capacity study of lead–rubber bearing system in seismic steel structures design.
Arabian Journal for Science and Engineering, Springer, 42(9), 3863–3874. d.
https://doi.org/10.1007/s13369-017-2489-z##
Shangtao, H., Menggang, Y., Dongliang, M., & Renkang, H. (2023). Damping performance of the degraded fluid viscous damper due to oil leakage.
Structures, 48, 1609-1619, ISSN 2352-0124.
https://doi.org/10.1016/j.istruc.2023.01.070.##
Syrakos, A., Dimakopoulos, Y., & Tsamopoulos, J. (2018). Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity.
Physics of Fluids, 30(3), 030708.
https://doi.org/10.1063/1.5011755.##
ANSYS, (2014). Academic Research, ANSYS Fluent, Release 15.0.##
Taylor, D. P. (2010). Smart buildings and viscous dampers design engineer's perspective.
Structural Design of Tall and Special Buildings, 19(4), 369-372.
https://doi.org/10.1002/tal.621.##
Venkata Ramudu, A. C., Anantha Kumar, K., Sugunamma, V. et al. (2022). Impact of Soret and Dufour on MHD Casson fluid flow past a stretching surface with convective–diffusive conditions.
Journal of Thermal Analysis and Calorimetry 147, 2653–2663.
https://doi.org/10.1007/s10973-021-10569-w##
Yasuda, K. (1979). Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. [Doctoral thesis, MIT Cambridge], Mass.
http://hdl.handle.net/1721.1/16043##