Effect of Blade Trimming Length on the Performance of Marine Centrifugal Pump

Document Type : Regular Article

Authors

1 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, Shanghai 200072, China

2 Chinese Ship Scientific Research Center, Shanghai, Shanghai 200011, China

Abstract

To study the hydrodynamic characteristics of blade trimming length in centrifugal pumps, Delayed Detached Eddy Simulation (DDES) with nonlinear eddy viscosity was utilized to conduct unsteady calculations on the centrifugal pump. A comprehensive examination of the fluid dynamic properties of the centrifugal pump, including external features, flow conditions, and pressure fluctuations, was carried out. By applying the theory of entropy production, the areas of high energy loss within the centrifugal pump were identified, and the correlations between local entropy production, energy loss, and unsteady flow in different areas with varying blade trimming lengths were analyzed. The results indicate that with the increase in blade trimming length, under rated flow conditions, the head decreases by 1.8%, 3.2%, and 5.7% for different blade trimming lengths, respectively, compared to normal impellers. Similarly, the efficiency decreases by 0.5%, 0.8%, and 1.0% for different blade trimming lengths, respectively. Similar trends were observed under other working conditions as well. As the degree of blade trimming increases, the irreversible losses after the failure of the centrifugal pump also increase significantly, indicating that the flow inside the centrifugal pump becomes disorder. Blade trimming leads to a disorderly fluid flow inside the centrifugal pump, causing an increase in the radial force during operation, which in turn leads to an increase in vibration amplitude and affects its operational stability. Blade trimming failure has a significant impact on the frequency and amplitude of pressure pulsation, resulting in abnormal pressure pulsation and abnormal vibration of the centrifugal pump. Therefore, early warning and diagnosis of blade trimming can be achieved through pressure pulsation monitoring.

Keywords

Main Subjects


Aenis, M., Knopf, E., & Nordmann, R. (2002). Active magnetic bearings for the identification and fault diagnosis in turbomachinery. Mechatronics, 12(8), 1011-1021. https://doi.org/10.1016/S0957-4158(02)00009-0.##
Araste, Z., Sadighi, A., & Moghaddam, M. J. (2020). Support vector machine-based fault diagnosis of a centrifugal pump using electrical signature analysis. 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS).##
Behzadmehr, A., & Mercadier, Y. (2009). Numerical study of flow parameters and entropy generation on a centrifugal fan. International Journal of Exergy, 6(1), 80-92. https://doi.org/10.1504/ijex.2009.023346.##
Brizuela, E. A. (1993). Numerical modeling of entropy generation and transport in the Blade-Tip gap layer of a radial impeller. ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, V001T03A026-V001T03A026. https://doi.org/10.1115/93-GT-085.##
Cao, S., Hu, Z., Luo, X., & Wang, H. (2020). Research on fault diagnosis technology of centrifugal pump blade crack based on PCA and GMM. Measurement, 173(4), 108558. https://doi.org/10.1016/j.measurement.2020.108558.##
Champagne, F., Harris, V., & Corrsin, S. (1970). Experiments on nearly homogeneous turbulent shear flow, Journal of Fluid Mechanics, 41(1), 81-139. https://doi.org/10.1017/S0022112070000538##
Chen, X. R. (2020). Research on the operating characteristics of marine centrifugal pumps. Jiangsu University. https://doi.org/10.27170/d.cnki.gjsuu.2020.000160##
Chen, Z. D., Yang, S. D., Li, X. J., Li, Y. P., & Li, L. M. (2023). Investigation on leakage vortex cavitation and corresponding enstrophy characteristics in a liquid nitrogen inducer. Cryogenics, 129, 103606. https://doi.org/10.1016/j.cryogenics.2022.103606.##
Feng, L. G. (2021). Research on the detection of GNSS phase center deviation using relative positioning method. Shaanxi Transportation Science and Education Research, 5-9. http://qikan.cqvip.com/Qikan/Article/Detail?id=7105239748##
Gong, R. Z., Wang, H. J., & Chen, L. X. (2013). Application of entropy production theory to hydro-turbine hydraulic analysis. Science China Technological Sciences, 56(7), 1636-1643. https://doi.org/10.1007/s11431-013-5229-y##
Gu, Y. D., Pei, J., Yuan, S. Q., Wang, W. J., Zhang, F., Wang, P., Appiah, D., & Liu, Y. (2019). Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method. Energy, 170(MAR.1), 986-997. https://doi.org/10.1016/j.energy.2018.12.204##
Hu, Z. J. (2019). Research on fault diagnosis technology for cracks in single stage and single suction centrifugal pump blades. Wuhan: Huazhong University of Science and Technology. https://doi.org/10.27157/d.cnki.ghzku.2019.004578##
Hunt, J. C. R., Wray, A. A., & Mon, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Center. for turbulence research. https://web.stanford.edu/group/ctr/Summer/201306111537.pdf.##
Jamimoghaddam, M., Sadighi, A., & Araste, Z. (2020). ESA-Based anomaly detection of a centrifugal pump using Self-Organizing map. 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS).##
Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47(10), 2205- 2215. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.025##
Kock, F., & Herwig, H. (2005). Entropy production calculation for turbulent shear flows and their implementation in CFD codes. International Journal of Heat and Fluid Flow, 26(4), 672-680. https://doi.org/10.1016/j.ijheatfluidflow.2005.03.005##
Lan, J. (2020), Study on Fault Characteristics of Ship Centrifugal Pump Based on CFD. Dalian University of Technology, Dalian, China. https://doi.org/10.26991/d.cnki.gdllu.2020.002581##
Lee, M. J., Kim, J., & Moin, P. (1990). Structure of turbulence at high shear rate, Journal of Fluid Mechanics, 216, 561-583. https://doi.org/10.1017/S0022112090000532##
Li, D. Y., Wang, H. J., Qin, Y. L., Han, L., Wei, X., & Qin, D. (2021). Entropy production analysis of hysteresis characteristic of a pump-turbine model. Energy Conversion and Management, 149, 175-191. https://doi.org/10.1016/j.enconman.2017.07.024##
Li, X. J., Ouyang, T., Lin, Y. P., & Zhu, Z. C. (2023). Interstage difference and deterministic decomposition of internal unsteady flow in a five-stage centrifugal pump as turbine. Physics of Fluids, 35(4), 045136. https://doi.org/10.1063/5.0150300##
Li, Y. J., Liu, Q., & Li, W. (2023). Research and application of intelligent diagnosis method for impeller faults based on digital twin flow field cloud map of centrifugal pumps. Journal of Beijing University of Aeronautics and Astronautics, 1-11. https://doi.org/10.13700/j.bh.1001-5965.2022.0997##
Li, Y., Wang, X., & Si, S. (2018). Centrifugal pumps fault diagnosis using multivariate multiscale symbolic dynamic entropy and logistic regression. Prognostics and System Health Management Conference. https://sci-hub.st/10.1109/phm-chongqing.2018.00078##
Liu, C., Chen, H. X., & Ma, Z. (2022). Influence of non-uniform inflow on unsteady internal flow characteristics of waterjet pump. Modern Physics Letters B, 36(05). https://doi.org/10.1142/S021798492150576X##
Muralidharan, V., Sugumaran, V., & Sakthivel, N. R. (2011). Wavelet decomposition and support vector machine for fault diagnosis of monoblock centrifugal pump. International Journal of Data Analysis Techniques & Strategies. 3(2), 159-177. https://doi.org/10.1504/IJDATS.2011.039849##
Ohiemi, I. E., Yang, S. S., Singh, P., Li, Y. J., & Osman, F. (2023). Evaluation of energy loss in a low-head axial flow turbine under different blade numbers using entropy production method. Energy, 274, 127262. https://doi.org/10.1016/j.energy.2023.127262##
Rogers, M. M., & Moin, P. (1987). The structure of the vorticity field in homogeneous turbulent flows. Journal of Fluid Mechanics, 176, 33-66. https://doi.org/10.1017/S0022112087000569##
Seo, D. H., & Lee, D. J. (2019). Numerical investigation of highly unsteady accelerated/decelerated flows for blunt bodies experiencing impulsive motion. Physics of Fluids, 31(5). https://doi.org/10.1063/1.5089674##
Spalart, P. R., Jou, W. H., & Strelets, M. (1997). Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. Proceedings of 1st AFOSR International Conference on DNS/LES, Advances in DNS /LES. Columbus: Greyden Press, 137-147. https://www.researchgate.net/profile/Michael-Strelets/publication/236888805_Comments_on_the_Feasibility_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach/links/0c9605232f307402e8000000/Comments-on-the-Feasibility-of-LES-for-Wings-and-on-a-Hybrid-RANS-LES-Approach.pdf.##
Tan, M., Lu, Y., Wu, X., Liu, H., & Tian, X. (2020). Investigation on performance of a centrifugal pump with multi-malfunction. Journal of Low Frequency Noise Vibration and Active Control, 40(2):146134842094234. https://doi.org/10.1177/1461348420942349.##
Tavoularis, S., & Corrsin, S. (1981). Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1, Journal of Fluid Mechanics, 104,311-347. https://doi.org/10.1017/S0022112081002930.##
Wallace, J. D., & Davies, M. (1997). Entropy generation measurement in a laminar turbine blade boundary-layer. ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition,American Society of Mechanical Engineers.##
Wang, S. L., Zhang, L., Ye, X. M., & Wu, Z. (2011). Performance optimization of centrifugal fan based on entropy generation theory. Proceedings of the CSEE, 31(11), 86-91. https://doi.org/10.1631/jzus.A1000257.##
Wang, S., Yang, S., Shao, C. L., & Zhou, J. F. (2023). Impact of transient gas injection on flow-induced noise in centrifugal pumps. Journal of Applied Fluid Mechanics, 16(3), 477-489. https://doi.org/10.47176/JAFM.16.03.1284.##
Wang, X. L., Wang, Y., Liu, H. L., Xiao, Y. D., Jiang, L. L., & Li, M. (2023). A numerical investigation on energy characteristics of centrifugal pump for cavitation flow using entropy production theory. International Journal of Heat and Mass Transfer, 201, 123591. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123591.##
Wang, X., Yan, Y., Wang, W. Q., & Hu, Z. P. (2023). Evaluating energy loss with the entropy production theory: A case study of a micro horizontal axis river ducted turbine, Energy Conversion and Management, 276, 116553. https://doi.org/10.1016/j.enconman.2022.116553.##
Wang, Y. (2019). Improvement and application of rans/les turbulence model based on turbulent flow field with curvature and rotation effect. Jiangsu University, Zhenjiang, China. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkOsSuGHvNoCRcTRpJSuXuqSPO-8wiUoEWkx3pr3no99l1Zn_G6Vrho3Nl5Asm177j&uniplatform=NZKPT.##
Wei, Q., Chen, H. X., & Ma, Z. (2015). Numerical simulation of flow around airfoil with Non-Linear RANS model, Proc. ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, American Society of Mechanical Engineers, V01AT02A014-V001AT002A014.##
Wei, Q., Chen, H. X., Ma, Z. (2016). An hybrid RANS/LES model for simulation of complex turbulent flow. Journal of Hydrodynamics, 28(5), 811-820. https://doi.org/10.1016/S1001-6058(16)60684-4.##
Wu, X. F., Sun, X. L., Tan, M. G., & Liu, H. L. (2021). Research on operating characteristics of a centrifugal pump with broken impeller. Advances in Mechanical Engineering, 13, 9. https://doi.org/10.1177/16878140211049951.##
Yang, H. (2019). Optimization of impeller parameters and study of typical fault diagnosis for centrifugal pumps. Yanshan University, Hebei, China. https://doi.org/10.27440/d.cnki.gysdu.2019.000388.##
Zabihihesari, A., Shirazi, F. A., Riasi, A., Mahjoob, M.,& Asnaashari, E. (2020). Simulation-based vibration sensor placement for centrifugal pump impeller fault detection. Journal of Computational Applied Mechanics, 51(1), 72-80. https://doi.org/10.22059/jcamech.2020.298391.485.##
Zhai, L. J., Chen, H. X., & Ma, Z. (2022). A delayed detached eddy simulation model for the simulation of complex turbulent flow. Journal of Applied Fluid Mechanics, 15(4), 1111-1124. https://doi.org/10.47176/JAFM.15.04.1061.##
Zhang, J. (2017). Research on the operating characteristics of marine centrifugal pumps under typical fault conditions. Jiangsu University. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAk-6BvX81hrs37AaEFpExs0JXM5APDPeb0NIKM4j3qVgddU1FGMDdOS_4w_ecw3LBr&uniplatform=NZKPT.##
Zhang, S. W., Chen, H. X., & Ma, Z. (2021). A modified filter-based model for simulation of unsteady cavitating flows around a NACA66 hydrofoil, Modern Physics Letters B, 35(1), 2150032. https://doi.org/10.1142/S0217984921500329.##
Zhang, S. W., Chen, H. X., Ma, Z., Wang, D. F., Ding, K. J. (2022a). Unsteady flow and pressure pulsation characteristics in centrifugal pump based on dynamic mode decomposition method. Physics of Fluids, 34, 112014-1-112014-21. https://doi.org/10.1063/5.0097223.##
Zhang, S. W., Tian, R. Q., Ding, K, J., Chen, H. X., & Ma, Z. (2022b). Numerical and experimental study in pressure pulsation and vibration of a two-stage centrifugal pump under cavitating condition. Modern Physics Letters B, 36(1), 2150501. https://doi.org/10.1142/S0217984921505011.##
Zhang, X., Wang, Y., & Xu, X. M. (2011). Internal energy conversion characteristics of low specific speed centrifugal pump impellers. Transactions of the Chinese Society for Agricultural Machinery, 42(7), 75-81. https://doi.org/10.3969/j.issn.1000-12985.##
Zhang, Z., Chen, H. X., Ma, Z., He, J., & Liu, C. (2019a). Research on improving the dynamic performance of centrifugal pumps with twisted gap drainage blades. Journal of Fluids Engineering, 141(9), 1-15. https://doi.org/10.1115/1.4042885.##
Zhang, Z., Chen, H. X., Ma, Z., Wei, Q., He, J., Liu, H., & Liu, C. (2019b). Application of the hybrid RANS/LES method on the hydraulic dynamic performance of centrifugal pumps. Journal of Hydrodynamics, 31(3), 637-640. https://doi.org/10.1007/s42241-018-0150-2.##
Zhang, Z., Chen, H., Yin, J., Ma, Z., Gu, Q., Lu, J., & Liu, H. (2021). Unsteady flow characteristics in centrifugal pump based on proper orthogonal decomposition method. Physics of Fluids, 33(7), 075122. https://doi.org/10.1063/5.0058553.##
Zhou, L., Hang, J. W., & Bai, L. (2022). Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review. Applied Energy, 318. https://doi.org/10.1016/J.APENERGY.2022.119211.##
Zhu, J. (2016). Analysis of performance degradation mechanism and diagnostic method for multi-stage centrifugal pump faults. Beijing University of Chemical Technology, Beijing, China. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkkyu7xrzFWukWIylgpWWcEi6oSS-yoCOQ0JnsK3OJFB9bihmOhmnCROaj4pMD8AE0&uniplatform=NZKPT.##