Benini, E. (2004). Three-dimensional multi-objective design optimization of a transonic compressor rotor.
Propulsion and Power, 20(3).
https://doi.org/10.2514/1.2703##
Cao, Z., Zhang, X., Liang, Y., & Liu, B. (2021). Influence of blade lean on performance and shock wave/tip leakage flow interaction in a transonic compressor rotor.
Journal of Applied Fluid Mechanics,
15(1), 153-167.
https://doi.org/10.47176/JAFM.15.01.32753##
Cohen, H., Rogers, G., & Saravanamuttoo, H. (1996).
Gas turbine theory (fourth ed.). London: Longman Group Limited.
##
Friedman, J., Milton, J., & Karian, J. (2013).
Gas Turbine Aircraft Engine. New York: The American Society of Mechanical Engineers.
##
Goswami, S., & Govardhan, M. (2019). Effect of part sweep on axial flow compressor performance in the presence of circumferential casing grooves.
Indian Academy of Sciences.
https://doi.org/10.1007/s12046-019-1176-z##
Hah, C., & Wennerstrom, A. (1990). Three-dimensional flowfields inside a transonic compressor with swept blades.
Gas Turbine and Aeroengine Congress and Exposition, Brussels, Belgium.
https://doi.org/10.1115/90-GT-359##
Huang, N. Z., Zhao, X., & Zhang, Y. H. (2019). Aerodynamic performance improvement of a transonic axial compressor by swept and leaned rotors.
AIAA Propulsion and Energy 2019 Forum.
https://doi.org/10.2514/6.2019-3819##
Kruzke, J. (2018).
GasTurb 13, design and off-design performance of gas turbines. Aachen, Germany: GasTurb GmbH.
##
Kurazke, J., & Halliwell, I. (2018).
Propulsion and Power, An Eploration of Gas Turbine Performance Modeling. Cham, Switzerland: Springer International Publishing AG, part of Springer Nature 2018.
##
Lu, B., Teng, J., Zhu, M., & Qiang, X. (2023). Design optimization of a transonic compressor blade with sweep and lean integrated with axial slot casing treatment.
Aerospace Science and Technology, 136.
https://doi.org/10.1299/jsmeb.48.793##
Mattingly, J. (2006).
Elements of propulsion: Gas turbines and rockets. Blacksburg, Virginia: American Institute of Aeronautics and Astronautics Inc.
##
Menter, F., Kuntz, M., & R. Langtry. (2003). Ten years of industrial experience with the SST turbulence model.
The 4th International Symposium on Turbulence, Heat and Mass Transfer, 10(3), 625-632.
##
Oyama, A., Liou, M. S., & Obayashi, S. (2004). Transonic axial-flow blade optimization: Evolutionary algorithms/three-dimensional navier–stokes solver.
Propulsion and Power, 20(4).
https://doi.org/10.2514/1.2290##
Razavi, S., Sammak, S., & Boroomand, M. (2017). Multi-disciplinary design and optimization of swept and leaned transonic rotor.
Journal of Engineering for Gas Turbines and Power, 139(12).
https://doi.org/10.1115/1.4037456##
Saravanamuttoo, H., Rogers, G., & Cohen, H. (2001).
Gas turbine theory (fifth ed.). Carleton: Pearson Education.
##
Strazisar, A., Wood, J., Hathaway, M., & Suder, K. (1989).
Laser anemometer measurements in a transonic axial-flow fan rotor. Cleveland, Ohio: NASA Lewis Research Center.
##
Sun, S., Wang, S., Chen, S., Tao, C., Cai, L., & Chen, J. (2019). The impact of various forward sweep angles on the performance of an ultrahigh-load low-reaction transonic compressor rotor.
Applied Thermal Engineering, 953-966.
https://doi.org/10.1016/j.applthermaleng.2019.01.045##
Wang, J., He, X., Wang, B., & Zheng, X. (2022). Shapley additive explanations of multi-geometrical variable coupling effect in transonic compressor.
Journal of Engineering for Gas turbines and Power, 12.
https://doi.org/10.1115/1.4053322##
Wang, X., Hirsch, C., Kang, S., & Lacor, C. (2011). Multi-Objective optimization of turbomachinery using improved NSGA-II and approximation model.
Computer Methods in Applied Mechanics and Engineering, 200(9-12), 883-895.
https://doi.org/10.1016/j.cma.2010.11.014##
Wang, Z., Qu, F., Wang, Y., Luan, Y., & Wang, M. (2020). Research on the lean and swept optimization of a single stage axial compressor.
Engineering Applications of Computational Fluid Mechanics, 15(1), 142-163.
https://doi.org/10.1080/19942060.2020.1862708##
Yu, M., Shi, L., Yu, P., & Yao, K. (2022). Robust design of a fan rotor blade by sweep and lean optimization with surface roughness.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering https://doi.org/10.1177/09544100221113118##