Agarwal, D., Basu, P., Tharakanc, T. J., & Salihd, A. (2014). Prediction of gas-core vortices during draining of liquid propellants from tanks.
Aerospace Science and Technology, 32, 60–65.
https://doi.org/10.1016/j.ast.2013.12.001##
Ahn, S. H., Xiao, Y., Wang, Z., Luo, H., & Luo, Y. (2019). Numerical estimation of air core length in two-phase free surface vortex.
Journal of Hydraulic Research, 57 (4), 475-487.
https://doi.org/10.1080/00221686.2018.1489899##
Domfeh, M. K., Gyamfi, S., Amo-Boateng, M., Andoh, R., Ofosu, E. A., & Tabor, G. (2020a). Numerical simulation of an air-core vortex and its suppression at an intake using openFOAM.
Fluids, 5, 221.
https://doi.org/10.3390/fluids5040221##
Domfeh, M. K., Gyamfia, S., Amo-Boateng, M., Andoh, R., Ofosu, E. A., & Tabor, G. (2020b). Free surface vortices at hydropower intakes: A state-of-the-art review.
Scientific African, 8 e00355.
https://doi.org/10.1016/j.sciaf.2020.e00355##
Fluent 6.3 User's Guide, Copyright 2006 by Fluent Inc.##
Fox, R. W., McDonald, A., & Mitchell, J. (2020). Fox and McDonalds: Introduction to Fluid Mechanics (10th Ed.). John Wiley & Sons Inc.##
Huang, T. H. , Jan, C. D., & Hsu, Y. C. (2017). Numerical simulations of water surface profiles and vortex structure in a vortex settling basin by using Flow-3D.
Journal of Marine Science and Technology, 25 (5), 531-542.
https://doi.org/10.6119/JMST-017-0509-1##
Jochmann, P., Sinigersky, A., Hehle, M., Scha¨fer, O., Koch, R., & Bauer, H. J. (2006). Numerical simulation of a precessing vortex breakdown.
International Journal of Heat and Fluid Flow, 27, 192–203.
https://doi.org/10.1016/j.ijheatfluidflow.2005.08.003##
Kan, K., Xu, Y., Li, Z., Xu, H., Chen, H., Zi, D., Gao, Q., & Shen, L. (2023). Numerical study of instability mechanism in the air-core vortex formation process.
Engineering Applications of Computational Fluid Mechanics, 17(1), 2156926.
https://doi.org/10.1080/19942060.2022.2156926##
Li, J., Liang, G., Zhu, P., & Wang, X. (2019). Numerical investigation of the operating process of the liquid hydrogen tank under gaseous hydrogen pressurization.
Aerospace Science and Technology, 93, 105327.
https://doi.org/10.1016/j.ast.2019.105327##
Mahyari, M. N. , Karimi, H., Naseh H. & Mirshams, M. (2010). Numerical and experimental investigation of vortex breaker effectiveness on the improvement in launch vehicle ballistic parameters.
Journal of Mechanical Science and Technology, 24 (10), 1997-2006.
https://doi.org/10.1007/s12206-010-0618-7##
Manda, U., Parahovnik, A., & Peles, Y., (2020). Theoretical
Investigation of boundary layer behavior and heat transfer of supercritical carbon dioxide (sCO2) in a microchannel. 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA.
https://doi.org/10.1109/ITherm45881.2020.9190408 ##
Manda, U., Parahovnik, A., & Peles, Y., (2022). Thermoacoustic waves and Piston Effect inside a microchannel with Carbon Dioxide near critical conditions.
Thermal Science and Engineering Progress, 36(1), Article 101528.
https://doi.org/10.1016/j.tsep.2022.101528##
Manda, U., Parahovnik, A., Mazumdar, S., & Peles, Y., (2023). Heat transfer characteristics of turbulent flow of supercritical carbon dioxide (sCO2) in a short-heated microchannel.
International Journal of Thermal Sciences, 192, Part A, Article 108389,
https://doi.org/10.1016/j.ijthermalsci.2023.108389. ##
Manda, U., Peles, Y., & Putnam, S. (2021).
Comparison of heat transfer characteristics of flow of supercritical carbon dioxide and water inside a square microchannel. 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), San Diego, CA, USA.
https://doi.org/10.1109/ITherm51669.2021.950319.##
Monshizadeh, M., Tahershamsi, A., Rahimzadeh, H., & Sarkardeh, H. (2018). Vortex dissipation using a hydraulic-based anti-vortex device at intakes.
International Journal of Civil Engineering, 16, 1137–1144.
https://doi.org/10.1007/s40999-017-0266-8##
Mulligan, S., Casserly, J., & Sherlock, R. (2014). Advances in Hydroinformatics. In P. Gourbesville, J. A. Cunge and G. Caignaert (Eds.),
Springer Water (pp. 549-569). Experimental and Numerical Modelling of Free-Surface Turbulent Flows in Full Air-Core Water Vortices
https://doi.org/10.1007/978-981-287-615-7_37##
Naderi, V., Farsadizadeh, D., Lin, C., & Gaskin, S. (2019). A 3D study of an Air-Core vortex using HSPIV and flow visualization.
Arabian Journal for Science and Engineering, 44, 8573–8584.
https://doi.org/10.1007/s13369-019-03764-3##
Tayyab, M., Cheema, T. A., Malik, M. S., Muzaffar, A., Sajid, M. B., & Park, C. W. (2020). Investigation of thermal energy exchange potential of a gravitational water vortex.
Renewable Energy, 162, 1380-1398.
https://doi.org/10.1016/j.renene.2020.08.097##
Thingbø, S. S. (2013).
Simulation of viscous flow around a circular cylinder with STAR-CCM+. [Master Thesis, Norwegian University of Science and Technology]. Marine Hydrodynamics.
http://hdl.handle.net/11250/238639##
Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamic, the finite volume method (2nd ed.). Pearson Education Limited.##
Zi, D., Shen, L., Wang, F., Wang, B., & Yao, Z. (2022). Characteristics and mechanisms of air-core vortex meandering in a free-surface intake flow.
International Journal of Multiphase Flow, 152, Article 104070.
https://doi.org/10.1016/j.ijmultiphaseflow.2022.104070##
Zi, D., Wang, F., Wang, C., Huang, C., & Shen, L. (2021). Investigation on the air-core vortex in a vertical hydraulic intake system.
Renewable Energy, 177, 1333-1345.
https://doi.org/10.1016/j.renene.2021.06.062##