Numerical Investigation of Optimal Hydrodynamic Performance by Changing the Orifice Ratio and Relative Opening of a Land-Fixed Rectangular-based OWC

Document Type : Regular Article

Authors

Department of Mechanical Engineering, NIT, Silchar, Assam - 788 010, India

Abstract

The energy that can be extracted from the ocean is inexhaustible. An oscillating water column (OWC) is a wave energy converter that extracts this energy. A numerical investigation has been conducted by altering relative opening (α) and orifice ratio (τ) to assess the maximal energy of a land-fixed rectangular-based OWC model in a nonlinear wave field. The power of OWC has also been evaluated by the wave steepness (H/L) alteration. The numeric analysis has been imposed to obtain the optimal power using Fluent software in a three-dimensional tank. Validation of the present numeric model’s result correlates with the printed empirical data. The Finite Volume Method (FVM) solves RANS equations, and the relevant waves are generated at the inlet of the numerical tank by the inlet velocity approach. The efficiency (η) increases with relative openings (α) increase. The efficiency (η) decreases with wave steepness (H/L) increase. The η reaches the optimum shown in the study at H/L = 0.02 and τ = 1.03% for entire values of α. The excellent energy of around 71.3% is attained at α =75% and H/L = 0.02. This study is a highly relevant source of information that finds the optimal efficiency of a land-fixed rectangular base OWC and gives prior knowledge of the performance of OWC before the real-life experiment. 

Keywords


Ashlin, S. J., Sundar, V., & Sannasiraj, S. A. (2016). Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, 96, 341-353. https://doi.org/10.1016/j.renene.2016.04.091##
Bouali, B., & Larbi, S. (2013). Contribution to the geometry optimisation of an oscillating water column wave energy converter. Energy Procedia, 36, 565-573. https://doi.org/10.1016/j.egypro.2013.07.065##
Çelik, A., & Altunkaynak, A. (2019). Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter. Energy, 188, 116071.  https://doi.org/10.1016/j.energy.2019.116071##
Count, B. M., & Evans, D. V. (1984). The influence of projecting sidewalls on the hydrodynamic performance of wave-energy devices. Journal of Fluid Mechanics, 145, 361-376. https://doi.org/10.1017/S0022112084002962##
Delauré, Y. M. C., & Lewis, A. (2003). 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, 30(3), 309-330. https://doi.org/10.1016/S0029-8018(02)00032X##
Dizadji, N., & Sajadian, S. E. (2011). Modeling and optimization of the chamber of OWC system. Energy, 36(5), 2360-2366. https://doi.org/10.1016/j.energy.2011.01.010##
El Marjani, A., Ruiz, F. C., Rodriguez, M. A., & Santos, M. P. (2008). Numerical modelling in wave energy conversion systems. Energy, 33(8), 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018##
Evans, D. V. (1978). The oscillating water column wave-energy device. IMA Journal of Applied Mathematics22(4), 423-433. https://doi.org/10.1093/imamat/22.4.423##
Evans, D. V. (1982). Wave-power absorption by systems of oscillating surface pressure distributions. Journal of Fluid Mechanics, 114, 481-499. https://doi.org/10.1017/S0022112082000263##
Evans, D. V., & Porter, R. (1995). Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 17(3), 155-164. https://doi.org/10.1016/0141-1187(95)00008-9##
Falcão, A. D. O., & Sarmento, A. J. N. A. (1980, August). Wave generation by a periodic surface pressure and its application in wave-energy extraction. 15th International Congress of Theoritical and Applied Mechanics. (ICTAM), Toronto.##
Falcão, A. F., & Henriques, J. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, 85, 1391-1424. https://doi.org/10.1016/j.renene.2015.07.086##
Falnes, J., & McIver, P. (1985). Surface wave interactions with systems of oscillating bodies and pressure distributions. Applied Ocean Research, 7(4), 225-234. https://doi.org/10.1016/0141-1187(85)90029-X##
Gouaud, F., Rey, V., Piazzola, J., & Van Hooff, R. (2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering, 57(11-12), 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003##
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5##
Hotta, H., Miyazaki, T., Washio, Y., & Ishii, S. (1988). On the performance of the wave power device Kaimei—the results on the open sea tests. Proceedings of the Seventh International Conference on Offshore Mechanics and Arctic Engineering, Houston, TX, USA.##
Iturrioz, A., Guanche, R., Lara, J. L., Vidal, C., & Losada, I. J. (2015). Validation of OpenFOAM® for oscillating water column three-dimensional modeling. Ocean Engineering, 107, 222-236. https://doi.org/10.1016/j.oceaneng.2015.07.051##
Josset, C., & Clément, A. H. (2007). A time-domain numerical simulator for oscillating water column wave power plants. Renewable Energy, 32(8), 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016##
Liu, Z. 2008. Experimental and numerical investigation of oscillating water column wave energy convertor. [Doctoral Thesis, Qingdao, Ocean University of China].##
Liu, Z., Hyun, B., Jin, J., Hong, K., & Lee, Y. (2016). OWC air chamber performance prediction under impulse turbine damping effects. Science China Technological Sciences, 59, 657-666. https://doi.org/10.1007/s11431-016-6030-5##
López, I., Pereiras, B., Castro, F., & Iglesias, G. (2014). Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model. Applied Energy, 127, 105-114. https://doi.org/10.1016/j.apenergy.2014.04.020##
Luo, Y., Nader, J. R., Cooper, P., & Zhu, S. P. (2014). Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters. Renewable Energy, 64, 255-265. https://doi.org/10.1016/j.renene.2013.11.007##
Malmo, O., & Reitan, A. (1985). Wave-power absorption by an oscillating water column in a channel. Journal of Fluid Mechanics, 158, 153-175. https://doi.org/10.1017/S0022112085002592##
Malmo, O., & Reitan, A. (1986). Wave-power absorption by an oscillating water column in a reflecting wall. Applied Ocean Research, (United Kingdom), 8(1). https://doi.org/10.1016/S0141-1187(86)80030-X##
McCormick, M. E. (1976). A modified linear analysis of a wave-energy conversion buoy. Ocean Engineering, 3(3), 133-144. https://doi.org/10.1016/0029-8018(76)90029-9##
Mccormick, M. E., & Burcher, E. S. (1982). Pneumatic wave energy conversion. Energy Resources and Environment, Pergamon. https://doi.org/10.1016/B978-0-08-029396-7.50047-1##
Mork, G., Barstow, S., Kabuth, A., & Pontes, M. T. (2010, January). Assessing the global wave energy potential. International Conference on Offshore Mechanics and Arctic Engineering . https://doi.org/10.1115/OMAE2010-20473##
Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An investigation into the hydrodynamic efficiency of an oscillating water column. https://doi.org/10.1115/1.2426992##
Nagata, S., Imai, Y., Murakami, T., & Okamoto, Y. (2017, June 25-30). Numerical analysis on drift force acting on a floating OWC-type wave energy converter “backward bent duct buoy” by vortex method. ISOPE International Ocean and Polar Engineering Conference ISOPE. San Francisco, California, USA.##
Ning, D. Z., Shi, J., Zou, Q. P., & Teng, B. (2015). Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method). Energy, 83, 177-188. https://doi.org/10.1016/j.energy.2015.02.012##
Ning, D. Z., Wang, R. Q., Zou, Q. P., & Teng, B. (2016a). An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter. Applied Energy, 168, 636-648. https://doi.org/10.1016/j.apenergy.2016.01.107##
Ning, D. Z., Wang, R. Q., Gou, Y., Zhao, M., & Teng, B. (2016b). Numerical and experimental investigation of wave dynamics on a land-fixed OWC device. Energy, 115, 326-337. https://doi.org/10.1016/j.energy.2016.09.001##
Pereiras, B., López, I., Castro, F., & Iglesias, G. (2015). Non-dimensional analysis for matching an impulse turbine to an OWC (oscillating water column) with an optimum energy transfer. Energy, 87, 481-489. https://doi.org/10.1016/j.energy.2015.05.018##
Pinson, P., Reikard, G., & Bidlot, J. R. (2012). Probabilistic forecasting of the wave energy flux. Applied Energy, 93, 364-370. https://doi.org/10.1016/j.apenergy.2011.12.040##
Pontes, M. T., & Falcao, A. N. T. Ó. N. I. O. (2001, October). Ocean energies: resources and utilisation. world energy council. 18th Congress, Buenos Aires.##
Simonetti, I., Cappietti, L., Elsafti, H., & Oumeraci, H. (2017). Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study. Energy, 139, 1197-1209. https://doi.org/10.1016/j.energy.2017.08.033##
Thiruvenkatasamy, K., & Neelamani, S. (1997). On the efficiency of wave energy caissons in array. Applied Ocean Research, 19(1), 61-72. https://doi.org/10.1016/S0141-1187(97)00008-4##
Tseng, R. S., Wu, R. H., & Huang, C. C. (2000). Model study of a shoreline wave-power system. Ocean Engineering, 27(8), 801-821. https://doi.org/10.1016/S0029-8018(99)00028-1##
Wang, D. J., Katory, M., & Li, Y. S. (2002). Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices. Ocean Engineering, 29(8), 871-885. https://doi.org/10.1016/S0029-8018(01)00058-0##
Washio, Y., Osawa, H., Nagata, Y., Furuyama, H., & Fujita, T. (2000). The offshore floating type wave power device ‘Mighty Whale’: open sea tests. Proceedings of the 10 International Offshore and Polar Engineering Conference, 373–380, Seattle, USA.##
Whittaker, T. J. T., & Stewart, T. P. (1993, July). An experimental study of nearshore and shoreline oscillating water columns with harbours. European Wave Energy Symposium. ##
Whittaker, T. J. T., McIlwaine, S. J., & Raghunathan, S. (1993, July). A review of the Islay shoreline wave power station. Proceedings of First European Wave Energy Symposium.##
Yadav, S. S., & DebRoy, P. (2022). Generation of stable linear waves in shallow water in a‎ Numerical wave tank. Journal of Applied Fluid Mechanics, 15(2), 537-549. https://doi.org/10.47176/jafm.15.02.32987##
Yu, Z., Ye, J., & You, Y. (1997). Site test of a 20kW wave power station at Dawashan Island. 16th International Conference on Offshore Mechanics and Arctic Engineering vol. 1- B, 97 104, Yokohama, Japan.##
Zhang, Y., Zou, Q. P., & Greaves, D. (2012). Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. Renewable Energy, 41, 159-170. https://doi.org/10.1016/j.renene.2011.10.011##