Firdhaus, A., Suastika, I. K., Kiryanto, K., & Samuel, S. (2021). Benchmark Study of FINETM/Marine CFD Code for the Calculation of Ship Resistance.
Kapal: Jurnal Ilmu Pengetahuan Dan Teknologi Kelautan, 18(2), 111–118.
http://doi.org/10.14710/kapal.v18i2.39727
Fitriadhy, A., Lim, S. Y., & Maimun, A. (2020). Prediction of an optimum total resistance coefficient on catamaran using design of experiment (DOE) incorporated with CFD approach.
EPI International Journal of Engineering, 3(1), 74–83.
https://doi.org/10.25042/epi-ije.022020.11
Hoa, N. T. N., Bich, V. N., Tu, T. N., Chien, N. M., & Hien, L. T. (2019). Numerical investigating the effect of water depth on ship resistance using RANS CFD method.
Polish Maritime Research, 26(3), 56–64.
https://doi.org/10.2478/pomr-2019-0046
ITTC. (2011). Recommended procedures and guidelines: practical guidelines for ship CFD. 26th International Towing Tank Conference.
Keuning, J. A., & Walree, F. V. (2006). The comparison of the hydrodynamic behaviour of three fast patrol boats with special hull geometries. International Conference on High Performance Marine Vehicles.
Kinaci, O. K., Sukas, O. F., & Bal, S. (2016). Prediction of wave resistance by a Reynolds-averaged Navier-Stokes equation-based computational fluid dynamics approach.
Journal of Engineering for the Maritime Environment, 230(3), 531–548.
https://doi.org/10.1177/1475090215599180
Kiryanto, Hadi, E. S., & Firdhaus, A. (2019). Total resistance analysis on bow form model ulstein X-bow with various angle of flare and stem angle.
IOP Conference Series: Materials Science and Engineering 674(1), 012003.
http://doi.org/10.1088/1757-899X/674/1/012003
Kulkarni, K. H., & Hinge, G. A. (2021a). Performance enhancement in discharge measurement by compound broad crested weir with additive manufacturing. Larhyss Journal, 48, 169-188.
Kulkarni, K. H., & Hinge, G. A. (2021b). Comparative study of experimental and CFD analysis for predicting discharge ceofficient of compound broad crested weir.
Water Supply – Water Science and Technology, IWA Publishing, 22(3), 3283-3296.
https://doi.org/10.2166/ws.2021.403
Kulkarni, K. H., & Hinge, G. A. (2023). An energy perpective of composite broad crested weir for measuring accurate discharge. Larhyss Journal, 54, 85-106.
Le, T. H., Vu, M. T., Bich, V. N., Phuong, N. K., Ha, N. T. H., Chuan, T. Q., & Tu, T. N. (2021). Numerical investigation on the effect of trim on ship resistance by RANSE method.
Applied Ocean Research, 111, 102642.
https://doi.org/10.1016/j.apor.2021.102642
Lee, J., Park, D. M., & Kim, Y. (2017). Experimental investigation on the added resistance of modified KVLCC2 hull forms with different bow shapes.
Journal of Engineering for the Maritime Environment, 231(2), 395–410.
https://doi.org/10.1177/1475090216643981
Lewis, E. V. (1988). Principles of naval architecture second revision Vol. II. Jersey City, NJ: The Society of Naval Architects and Marine Engineers.
Liu, Y., Yu, Z., Zhang, L., Liu, T., Feng, D., & Zhang, J. (2021). A fine drag coefficient model for hull shape of underwater vehicles.
Ocean Engineering, 236, 109361.
https://doi.org/10.1016/j.oceaneng.2021.109361
Liu, Z., Liu, W., Chen, Q., Luo, F., & Zhai, S. (2020). Resistance reduction technology research of high speed ships based on a new type of bow appendage.
Ocean Engineering, 206, 107246.
https://doi.org/10.1016/j.oceaneng.2020.107246
Mohan, N., & Pattamatta, A. (2015). implementation of two-layer realizable k- ε turbulence model into openfoam for the simulation of nuclear reactor cooling. International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC).
Ozdemir, Y. H., Barlas, B., Yilmaz, T., & Bayraktar, S. (2014). Numerical and experimental study of turbulent free surface flow for a fast ship model. Brodogradnja, 65(1), 39–54.
Samuel, S., Iqbal, M., Trimulyono, A., Purwanto, D. B., & Ariani, B. (2022). Evaluasi karakteristik deep-v planing hull dengan menggunakan metode moving grid mesh.
Warta Penelitian Perhubungan, 34(1), 71–78.
http://doi.org/10.25104/warlit.v34i1.1591
Samuel, S., Kim, D. J., Fathuddiin, A., & Zakki, A. F. (2021a).
A numerical ventilation problem on fridsma hull form using an overset grid system. IOP Conference Series: Materials Science and Engineering
1096(1), 012041.
http://doi.org/10.1088/1757-899X/1096/1/012041
Samuel, S., Trimulyono, A., Manik, P., & Chrismianto, D. (2021b). A numerical study of spray strips analysis on fridsma hull form.
Fluids, 6(11), 420.
https://doi.org/10.3390/fluids6110420
Talukdar, B. (2022). Comparative resistance & seakeeping analyses of warship displacement monohulls, when modified to inverted bow forms from conventional bow.
Transactions of the Krylov State Research Centre, 2(400), 67–78.
https://doi.org/10.24937/2542-2324-2022-2-400-67-78
White, J. K., Brizzolara, S., & Beaver, W. (2016). Effect of inverted bow on the hydrodynamic performance of navy combatant hull forms.
Transactions - Society of Naval Architects and Marine Engineers, 123, 2–13.
https://doi.org/10.5957/WMTC-2015-038
Wiliyan, R., Ariana, I. M., & Widhi, D. (2023).
Evaluation of energy efficiency existing ship index (EEXI) on container ship in indonesian shipping. IOP Conference Series: Earth and Environmental Science
1198(2023), 012025.
https://doi.org/10.1088/1755-1315/1198/1/012025
Yanuar, Gunawan, Sunaryo, & Jamaluddin, A. (2012). Micro-bubble drag reduction on a high speed vessel model.
Journal of Marine Science and Application, 11(3), 301–304.
https://doi.org/10.1007/s11804-012-1136-z