Structural Design and Performance Study of a Reciprocating Vortex Ring Generator

Document Type : Regular Article

Authors

College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu, China

Abstract

Vortex rings can maintain their structure during motion and achieve long-distance transport with low energy consumption, which is a fluid transport method with great energy-saving potential. In this paper, a reciprocating vortex ring generator structure is designed, which can generate two vortex rings during the reciprocating motion of one piston, making full use of the thrust in the reciprocating motion period of the piston and improving the vortex ring generation frequency compared with traditional vortex ring generators. For the characteristics of long-distance transport of vortex rings, an experimental platform is designed and built, and 277 sets of experiments are carried out with different geometric parameters. The results show that the effect of generating two vortex rings could be achieved under other parameter conditions, except for some parameter conditions where the diameter ratio D1/D2 = 4. By analyzing the influence of baffle width ratio, length ratio, and diameter ratio on the moving distance of vortex rings, the performance of the vortex ring generator is preliminarily studied. In 277 sets of experiments, the maximum moving distance ratio x1 of vortex ring 1 is 13.7 when L1/L2 = 2.4, D1/D2 = 2, and w1 = 0.2. And the maximum moving distance ratio x2 of vortex ring 2 is 20 when L1/L2 = 2, D1/D2 = 2.5, and w2 = 0.2. 

Keywords

Main Subjects


Buttà, P., & Marchioro, C. (2020). Time evolution of concentrated vortex rings. Journal of Mathematical Fluid Mechanics, 22(2), 19. https://doi.org/10.1007/s00021-020-0482-x
Cao, Z., Wang, R., Zhai, C., Wang, Y., Zhao, T., & Wu, S. (2022). Flow characteristics and formation optimization of vortex ring air supply. Indoor Air, 32(8), e13096. https://doi.org/https://doi.org/10.1111/ina.13096
Dabiri, J. O., & Gharib, M. (2004). Delay of vortex ring pinchoff by an imposed bulk counterflow. Physics of Fluids, 16(4), L28-L30. https://doi.org/10.1063/1.1669353
Dasouqi, A. A., Yeom, G. S., & Murphy, D. W. (2020). Bursting bubbles and the formation of gas jets and vortex rings. Experiments in Fluids, 62(1), 1. https://doi.org/10.1007/s00348-020-03089-0
Dipendra, G., Sanjay, P. S., & Jaywant, H. A. (2020). Design and development of a vortex ring generator to study the impact of the ring as a gust. bioRxiv, 2020.2010.2012.331777. https://doi.org/10.1101/2020.10.12.331777
Gemmell, B. J., Troolin, D. R., Costello, J. H., Colin, S. P., & Satterlie, R. A. (2015). Control of vortex rings for manoeuvrability. Journal of The Royal Society Interface, 12(108), 20150389. https://doi.org/10.1098/rsif.2015.0389
Gharib, M., Rambod, E., & Shariff, K. (1998). A universal time scale for vortex ring formation. Journal of Fluid Mechanics, 360, 121-140. https://doi.org/10.1017/S0022112097008410
Ikhlaq, M., Yasir, M., Ghaffari, O., & Arik, M. (2022). Acoustics and heat transfer characteristics of piezoelectric driven central orifice synthetic jet actuators. Experimental Heat Transfer, 35(6), 758-779. https://doi.org/10.1080/08916152.2021.1946211
Jain, S., Sharma, S., Roy, D., & Basu, S. (2023). Vortical cleaning of oil-impregnated porous surfaces. Physical Review Fluids, 8(4). https://doi.org/10.1103/PhysRevFluids.8.044701
Krueger, P. S. (2008). Circulation and trajectories of vortex rings formed from tube and orifice openings. Physica D: Nonlinear Phenomena, 237(14), 2218-2222. https://doi.org/https://doi.org/10.1016/j.physd.2008.01.004
Limbourg, R., & Nedić, J. (2021a). An extension to the universal time scale for vortex ring formation. Journal of Fluid Mechanics, 915. https://doi.org/10.1017/jfm.2021.141
Limbourg, R., & Nedić, J. (2021b). Formation of an orifice-generated vortex ring. Journal of Fluid Mechanics, 913, A29, Article A29. https://doi.org/10.1017/jfm.2021.36
Maxworthy, T. (1977). Some experimental studies of vortex rings. Journal of Fluid Mechanics, 81(3), 465-495. https://doi.org/10.1017/S0022112077002171
Mouallem, J., Daryan, H., Wawryk, J., Pan, Z., & Hickey, J. P. (2021). Targeted particle delivery via vortex ring reconnection. Physics of Fluids, 33(10). https://doi.org/10.1063/5.0066443
New, T. H., Long, J., Zang, B., & Shi, S. (2020). Collision of vortex rings upon V-walls. Journal of Fluid Mechanics, 899, A2, Article A2. https://doi.org/10.1017/jfm.2020.425
Nguyen, V. L., Takamure, K., & Uchiyama, T. (2019). Deformation of a vortex ring caused by its impingement on a sphere. Physics of Fluids, 31(10), 107108. https://doi.org/10.1063/1.5122260
Noro, S., Suzuki, Y., Shigeta, M., Izawa, S., & Fukunishi, Y. (2013). Boundary layer receptivity to localized disturbances in freestream caused by a vortex ring collision. Journal of Applied Fluid Mechanics, 6(3), 425-433. https://doi.org/10.36884/jafm.6.03.19484
Pullin, D. I. (1979). Vortex ring formation at tube and orifice openings. The Physics of Fluids, 22(3), 401-403. https://doi.org/10.1063/1.862606
Ren, H., Zhang, G. X., & Guan, H. S. (2016). Numerical study of the instability and flow transition in a vortex-ring/wall interaction. Journal of Applied Fluid Mechanics, 9(7), 2299-2309. https://doi.org/10.18869/acadpub.jafm.68.236.24926
Saaid, H., Segers, P., Novara, M., Claessens, T., & Verdonck, P. (2018). Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model. Experiments in Fluids, 59(3), 49. https://doi.org/10.1007/s00348-018-2504-5
Sakhri, N., Menni, Y., & Ameur, H. (2021). Enhancement of the natural ventilation within commercial and traditional wind towers in arid environments. Journal of Applied Fluid Mechanics, 14(5),1329-1336. https://doi.org/10.47176/jafm.14.05.32153
Seth, D., Flammang, B. E., Lauder, G. V., & Tangorra, J. L. (2017). Development of a vortex generator to perturb fish locomotion. Journal of Experimental Biology, 220(6), 959-963. https://doi.org/10.1242/jeb.148346
Shadden, S. C., Dabiri, J. O., & Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical vortex ring flows. Physics of Fluids, 18(4), 047105. https://doi.org/10.1063/1.2189885
Taddeucci, J., Peña Fernández, J. J., Cigala, V., Kueppers, U., Scarlato, P., Del Bello, E., & Panunzi, S. (2021). Volcanic vortex rings: axial dynamics, acoustic features, and their link to vent diameter and supersonic jet flow Geophysical Research Letters, 48(15), e2021GL092899. https://doi.org/https://doi.org/10.1029/2021GL092899
Tan, J., Dong, P., Gao, J., Wang, C., & Zhang, L. (2023). Coupling bionic design and numerical simulation of the wavy leading-edge and seagull airfoil of axial flow blade for air-conditioner. Journal of Applied Fluid Mechanics, 16(7),1316-1330. https://doi.org/10.47176/jafm.16.07.1634
Tian, H. Y., Xu, L., Hou, B. S., Huang, T., Huang, X. T., Liu, J. Q., & Wu, Y. J. (2021). Research on the feasibility verification based on continuous vortex ring generator and the matching degree of device parameters. Journal of Physics: Conference Series, 1888(1). https://doi.org/10.1088/17426596/1888/1/012020
Wang, C., & Covington, J. A. (2023). The development of a simple projection-based, portable olfactory display device. Sensors, 23(11). https://doi.org/10.3390/s23115189
Wang, Y., Zhai, C., Cao, Z., & Zhao, T. (2020). Potential application of using vortex ring for personalized ventilation. Indoor Air, 30(6), 1296-1307. https://doi.org/10.1111/ina.12699
Xia, X., Fu, C., Yang, Y., Yang, X., Gao, Y., & Qi, F. (2021). Vortex formation and frequency tuning of periodically-excited jet diffusion flames. Proceedings of the Combustion Institute, 38(2), 2067-2074. https://doi.org/10.1016/j.proci.2020.08.015
Xia, X., & Zhang, P. (2018). A vortex-dynamical scaling theory for flickering buoyant diffusion flames. Journal of Fluid Mechanics, 855, 1156-1169. https://doi.org/10.1017/jfm.2018.707
Xiang, Y., Qin, S., & Liu, H. (2018). Patterns for efficient propulsion during the energy evolution of vortex rings. European Journal of Mechanics - B/Fluids, 71,47-58. https://doi.org/https://doi.org/10.1016/j.euromechflu.2018.03.014
Yu, S., Han, D., He, W., Zhou, M., Zhu, L., Gao, Y., & Peng, T. (2023). Analysis and optimization of transient heat dissipation characteristics of high power resistors with a sensible heat storage method. Applied Thermal Engineering, 226. https://doi.org/10.1016/j.applthermaleng.2023.120246
Zhai, C., Wang, Y., Cao, Z., Zhao, T., Wang, R., Zhang, C., & Wu, S. (2022). Effect of thermal buoyancy on vortex ring air supply mode. Building and Environment, 221. https://doi.org/10.1016/j.buildenv.2022.109257
Zhang, X., Wang, J., & Wan, D. (2020). CFD investigations of evolution and propulsion of low speed vortex ring. Ocean Engineering, 195, 106687. https://doi.org/https://doi.org/10.1016/j.oceaneng.2019.106687