Cao, Z., Wang, R., Zhai, C., Wang, Y., Zhao, T., & Wu, S. (2022). Flow characteristics and formation optimization of vortex ring air supply.
Indoor Air,
32(8), e13096.
https://doi.org/https://doi.org/10.1111/ina.13096
Dabiri, J. O., & Gharib, M. (2004). Delay of vortex ring pinchoff by an imposed bulk counterflow.
Physics of Fluids,
16(4), L28-L30.
https://doi.org/10.1063/1.1669353
Dipendra, G., Sanjay, P. S., & Jaywant, H. A. (2020). Design and development of a vortex ring generator to study the impact of the ring as a gust.
bioRxiv, 2020.2010.2012.331777.
https://doi.org/10.1101/2020.10.12.331777
Gemmell, B. J., Troolin, D. R., Costello, J. H., Colin, S. P., & Satterlie, R. A. (2015). Control of vortex rings for manoeuvrability.
Journal of The Royal Society Interface,
12(108), 20150389.
https://doi.org/10.1098/rsif.2015.0389
Ikhlaq, M., Yasir, M., Ghaffari, O., & Arik, M. (2022). Acoustics and heat transfer characteristics of piezoelectric driven central orifice synthetic jet actuators.
Experimental Heat Transfer,
35(6), 758-779.
https://doi.org/10.1080/08916152.2021.1946211
Mouallem, J., Daryan, H., Wawryk, J., Pan, Z., & Hickey, J. P. (2021). Targeted particle delivery via vortex ring reconnection.
Physics of Fluids,
33(10).
https://doi.org/10.1063/5.0066443
New, T. H., Long, J., Zang, B., & Shi, S. (2020). Collision of vortex rings upon V-walls.
Journal of Fluid Mechanics,
899, A2, Article A2.
https://doi.org/10.1017/jfm.2020.425
Nguyen, V. L., Takamure, K., & Uchiyama, T. (2019). Deformation of a vortex ring caused by its impingement on a sphere.
Physics of Fluids,
31(10), 107108.
https://doi.org/10.1063/1.5122260
Noro, S., Suzuki, Y., Shigeta, M., Izawa, S., & Fukunishi, Y. (2013). Boundary layer receptivity to localized disturbances in freestream caused by a vortex ring collision.
Journal of Applied Fluid Mechanics,
6(3), 425-433.
https://doi.org/10.36884/jafm.6.03.19484
Saaid, H., Segers, P., Novara, M., Claessens, T., & Verdonck, P. (2018). Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model.
Experiments in Fluids,
59(3), 49.
https://doi.org/10.1007/s00348-018-2504-5
Sakhri, N., Menni, Y., & Ameur, H. (2021). Enhancement of the natural ventilation within commercial and traditional wind towers in arid environments.
Journal of Applied Fluid Mechanics,
14(5),1329-1336.
https://doi.org/10.47176/jafm.14.05.32153
Seth, D., Flammang, B. E., Lauder, G. V., & Tangorra, J. L. (2017). Development of a vortex generator to perturb fish locomotion.
Journal of Experimental Biology,
220(6), 959-963.
https://doi.org/10.1242/jeb.148346
Shadden, S. C., Dabiri, J. O., & Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical vortex ring flows.
Physics of Fluids,
18(4), 047105.
https://doi.org/10.1063/1.2189885
Taddeucci, J., Peña Fernández, J. J., Cigala, V., Kueppers, U., Scarlato, P., Del Bello, E., & Panunzi, S. (2021). Volcanic vortex rings: axial dynamics, acoustic features, and their link to vent diameter and supersonic jet flow
Geophysical Research Letters,
48(15), e2021GL092899.
https://doi.org/https://doi.org/10.1029/2021GL092899
Tan, J., Dong, P., Gao, J., Wang, C., & Zhang, L. (2023). Coupling bionic design and numerical simulation of the wavy leading-edge and seagull airfoil of axial flow blade for air-conditioner.
Journal of Applied Fluid Mechanics,
16(7),1316-1330.
https://doi.org/10.47176/jafm.16.07.1634
Tian, H. Y., Xu, L., Hou, B. S., Huang, T., Huang, X. T., Liu, J. Q., & Wu, Y. J. (2021). Research on the feasibility verification based on continuous vortex ring generator and the matching degree of device parameters.
Journal of Physics: Conference Series,
1888(1).
https://doi.org/10.1088/17426596/1888/1/012020
Wang, C., & Covington, J. A. (2023). The development of a simple projection-based, portable olfactory display device.
Sensors,
23(11).
https://doi.org/10.3390/s23115189
Wang, Y., Zhai, C., Cao, Z., & Zhao, T. (2020). Potential application of using vortex ring for personalized ventilation.
Indoor Air,
30(6), 1296-1307.
https://doi.org/10.1111/ina.12699
Xia, X., Fu, C., Yang, Y., Yang, X., Gao, Y., & Qi, F. (2021). Vortex formation and frequency tuning of periodically-excited jet diffusion flames.
Proceedings of the Combustion Institute,
38(2), 2067-2074.
https://doi.org/10.1016/j.proci.2020.08.015
Xia, X., & Zhang, P. (2018). A vortex-dynamical scaling theory for flickering buoyant diffusion flames.
Journal of Fluid Mechanics,
855, 1156-1169.
https://doi.org/10.1017/jfm.2018.707
Yu, S., Han, D., He, W., Zhou, M., Zhu, L., Gao, Y., & Peng, T. (2023). Analysis and optimization of transient heat dissipation characteristics of high power resistors with a sensible heat storage method.
Applied Thermal Engineering,
226.
https://doi.org/10.1016/j.applthermaleng.2023.120246
Zhai, C., Wang, Y., Cao, Z., Zhao, T., Wang, R., Zhang, C., & Wu, S. (2022). Effect of thermal buoyancy on vortex ring air supply mode.
Building and Environment,
221.
https://doi.org/10.1016/j.buildenv.2022.109257