Alamian, R., Shafaghat, R., Hosseini, S. S., & Zainali, A. (2017). Wave energy potential along the southern coast of the Caspian Sea.
International Journal of Marine Energy,
19, 221-234.
https://doi.org/10.1016/j.ijome.2017.08.002
Alizadeh Kharkeshi, B., Shafaghat, R., Alamian, R., & Aghajani Afghan, A. H. (2020). Experimental & analytical hydrodynamic behavior investigation of an onshore OWC-WEC imposed to Caspian Sea wave conditions.
International Journal of Maritime Technology,
14, 1-12.
http://dorl.net/dor/20.1001.1.23456000.2020.14.0.5.0
Alizadeh Kharkeshi, B., Shafaghat, R., Jahanian, O., & Alamian, R. (2021a). Experimental evaluation of the effect of dimensionless hydrodynamic coefficients on the performance of a multi-chamber oscillating water column converter in laboratory scale.
Modares Mechanical Engineering,
21(12), 823-834.
http://dorl.net/dor/20.1001.1.10275940.1400.21.12.5.5
Alizadeh Kharkeshi, B., Shafaghat, R., Jahanian, O., Alamian, R., & Rezanejad, K. (2022). Experimental study on the performance of an oscillating water column by considering the interaction effects of optimal installation depth and dimensionless hydrodynamic coefficients for the Caspian Sea waves characteristics.
Ocean Engineering,
256, 111513.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2022.111513
Alizadeh Kharkeshi, B., Shafaghat, R., Jahanian, O., Rezanejad, k., & Alamian, R. (2021b). Experimental evaluation of the effect of dimensionless hydrodynamic coefficients on the performance of a multi-chamber oscillating water column converter in laboratory scale.
Modares Mechanical Engineering,
21(12), 823-834.
http://mme.modares.ac.ir/article-15-52993-fa.html
Çelik, A., & Altunkaynak, A. (2020). Estimation of water column surface displacement of a fixed oscillating water column by simple mechanical model with determination of hydrodynamic parameters via physical experimental model.
Journal of Waterway, Port, Coastal, and Ocean Engineering,
146(5), 04020030.
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000593
Elhanafi, A., Fleming, A., Macfarlane, G., & Leong, Z. (2016). Numerical energy balance analysis for an onshore oscillating water column–wave energy converter.
Energy,
116, 539-557.
https://doi.org/10.1016/j.energy.2016.09.118
Hayati, M., Nikseresht, A. H., & Haghighi, A. T. (2020). Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics.
Renewable Energy,
161, 386-394.
https://doi.org/10.1016/j.renene.2020.07.073
Kharkeshi, B. A., Shafaghat, R., Jahanian, O., Alamian, R., & Rezanejad, K. (2022a). Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm.
Energy, 124925.
https://doi.org/https://doi.org/10.1016/j.energy.2022.124925
Kharkeshi, B. A., Shafaghat, R., Jahanian, O., Alamian, R., & Rezanejad, K. (2022b). Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm.
Energy,
260, 124925.
https://doi.org/https://doi.org/10.1016/j.energy.2022.124925
Kharkeshi, B. A., Shafaghat, R., Jahanian, O., Alamian, R., & Rezanejad, K. (2022c). Experimental study on the performance of an oscillating water column by considering the interaction effects of optimal installation depth and dimensionless hydrodynamic coefficients for the Caspian Sea waves characteristics.
Ocean Engineering,
256, 111513.
https://doi.org/10.1016/j.oceaneng.2022.111513
Liu, Z., Hyun, B.-S., Shi, H., & Hong, K. (2010). Practical simulation of oscillating water column chamber for wave energy conversion.
International Journal of Green Energy,
7(3), 337-346.
https://doi.org/10.1080/15435071003796210
López, I., Pereiras, B., Castro, F., & Iglesias, G. (2014). Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model.
Applied Energy,
127, 105-114.
https://doi.org/10.1016/j.apenergy.2014.04.020
Martinelli, L., Pezzutto, P., & Ruol, P. (2013). Experimentally based model to size the geometry of a new OWC device, with reference to the Mediterranean Sea wave environment.
Energies,
6(9), 4696-4720.
https://doi.org/10.3390/en6094696
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Rezanejad, K., Gadelho, J., & Soares, C. G. (2019). Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD.
Renewable Energy,
135, 1241-1259.
https://doi.org/10.1016/j.renene.2018.09.034
Shafaghat, R., Fallahi, M., Alizadeh Kharkeshi, B., & Yousefifard, M. (2022). Experimental evaluation of the effect of incident wave frequency on the performance of a dual-chamber oscillating water columns considering resonance phenomenon occurrence.
Iranian (Iranica) Journal of Energy & Environment,
13(2), 98-110.
https://doi.org/10.5829/ijee.2022.13.02.01
Simonetti, I., Cappietti, L., El Safti, H., & Oumeraci, H. (2015).
Numerical modelling of fixed oscillating water column wave energy conversion devices: toward geometry hydraulic optimization. ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering,
https://doi.org/10.1115/OMAE2015-42056
Teixeira, P. R., Davyt, D. P., Didier, E., & Ramalhais, R. (2013). Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations.
Energy,
61, 513-530.
https://doi.org/10.1016/j.energy.2013.08.062
Yazdi, H., Shafaghat, R., & Alamian, R. (2020). Experimental assessment of a fixed on-shore oscillating water column device: Case study on oman sea.
International Journal of Engineering,
33(3), 494-504.
https://doi.org/10.5829/IJE.2020.33.03C.14
Zhang, C., Dai, J., Cui, L., & Ning, D. (2023). Experimental study of nonlinear states of oscillating water column in waves.
Physics of Fluids,
35(1), 017108.
https://doi.org/10.1063/5.0129191
Zhang, Y., Zou, Q. P., & Greaves, D. (2012). Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device.
Renewable Energy,
41, 159-170.
https://doi.org/10.1016/j.renene.2011.10.011