Eleni, D. C., Athanasios, T. I., & Dionissios, M. P. (2012). Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil.
Journal of Mechanical Engineering Research, 4.
http://doi.org/10.5897/jmer11.074
Feldermann, A., Fischer, D., Neumann, S., & Jacobs, G. (2017). Determination of hydraulic losses in radial cylindrical roller bearings using CFD simulations.
Tribology International,
113, 245–251.
https://doi.org/10.1016/j.triboint.2017.03.020
Gao, W., Lyu, Y., Liu, Z., & Nelias, D. (2019a). Validation and application of a numerical approach for the estimation of drag and churning losses in high speed roller bearings.
Applied Thermal Engineering,
153, 390–397.
http://doi.org/10.1016/j.applthermaleng.2019.03.028
Gao, W., Nelias, D., Li, K., Liu, Z., & Lyu, Y. (2019b). A multiphase computational study of oil distribution inside roller bearings with under-race lubrication.
Tribology International,
140, 105862.
http://doi.org/10.1016/j.triboint.2019.105862
Holmberg, K., & Erdemir, A. (2019). The impact of tribology on energy use and CO
2 emission globally and in combustion engine and electric cars.
Tribology International,
135, 389–396.
http://doi.org/10.1016/j.triboint.2019.03.024
Liebrecht, J., Si, X., Sauer, B., & Schwarze, H. (2015). Investigation of drag and churning losses on tapered roller bearings.
Strojniški vestnik – Journal of Mechanical Engineering,
61, 399–408.
http://doi.org/10.5545/sv-jme.2015.2490
Liu, J., Ni, H., Zhou, R., Li, X., Xing, Q., & Pan, G. (2023). A simulation analysis of ball bearing lubrication characteristics considering the cage clearance.
Journal of Tribology,
145, 044301–1.
http://doi.org/10.1115/1.4056358
Maccioni, L., Chernoray, V. G., Mastrone, M. N., Bohnert, C., & Concli, F. (2022). Study of the impact of aeration on the lubricant behavior in a tapered roller bearing: Innovative numerical modelling and validation via particle image velocimetry.
Tribology International,
165, 107301.
http://doi.org/10.1016/j.triboint.2021.107301
Matsuyama, H., Dodoro, H., Ogino, K., Ohshima, H., & Toda, H. (2004). Development of super-low friction torque tapered roller bearing for improved fuel efficiency.
SAE Technical,
01, 2674.
http://doi.org/https://doi.org/10.4271/2004-01-2674
Menter, F. R. (2009). Review of the shear-stress transport turbulence model experience from an industrial perspective.
International Journal of Computational Fluid Dynamics,
23, 305-316.
http://doi.org/10.1080/10618560902773387
Morales-Espejel, G. E., & Wemekamp, A. W. (2022). An engineering drag losses model for rolling bearings.
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,
237, 415–430.
http://doi.org/10.1177/13506501221117959
Peterson, W., Russell, T., Sadeghi, F., & Berhan, M. T. (2021a). Experimental and analytical investigation of fluid drag losses in rolling element bearings.
Tribology International,
161, 107106.
http://doi.org/10.1016/j.triboint.2021.107106
Peterson, W., Russell, T., Sadeghi, F., Berhan, M. T., Stacke, L.-E., & Ståhl, J. (2021b). A CFD investigation of lubricant flow in deep groove ball bearings.
Tribology International,
154, 106735.
http://doi.org/10.1016/j.triboint.2020.106735
Ramdin, M., & Henkes, R. (2012). Computational fluid dynamics modeling of Benjamin and Taylor bubbles in two-phase flow in pipes.
Journal of Fluids Engineering ASME,
134(4), 1–8.
https://doi.org/10.1115/1.4006405
Renjith, S., Srinivasa, V. K., & Venkateshaiah, U. (2017). Thermal performance prediction of jet lubricated transmission system using computational methods.
SAE Technical Paper Series, 01, 2437.
http://doi.org/10.4271/2017-01-2437
Wei, C., Wu, W., Hou, X., & Yuan, S. (2022). Study on oil distribution and oil content of oil bath lubrication bearings based on MPS method.
Tribology Transactions,
65, 942–951.
http://doi.org/10.1080/10402004.2022.2113193
Wen, Y., & Oshima, S. (2014). Oil flow simulation based on CFD for reducing agitation torque of ball bearings.
SAE International Journal of Passenger Cars - Mechanical Systems,
7, 1385–1391.
http://doi.org/10.4271/2014-01-2850
Yan, K., Zhang, J., Hong, J., Wang, Y., & Zhu, Y. (2016). Structural optimization of lubrication device for high speed angular contact ball bearing based on internal fluid flow analysis.
International Journal of Heat and Mass Transfer,
95, 540–550.
http://doi.org/10.1016/j.ijheatmasstransfer.2015.12.036
Zhang, C., Gu, L., Mao, Y., & Wang, L. (2018). Modeling the frictional torque of a dry-lubricated tapered roller bearing considering the roller skewing.
Friction,
7, 51–563.
http://doi.org/10.1007/s40544-018-0232-8
Zhang, J. J., Lu, L. M., Zheng, Z. Y., Gan, L., & Lv, Z. Y. (2023). Visual comparative analysis for the oil-air two-phase flow of an oil-jet lubricated roller-sliding bearing.
Journal of Applied Fluid Mechanics,
16, 179-191.
http://doi.org/10.47176/jafm.16.01.1345