Ahn, J. W., Kim, G. D., Kim, K. S., Lee, J. T., & Seol, H. S., (2008). Development of the driving pump for the low noise large cavitation channel.
Journal of the Society of Naval Architects of Korea,
45(4), 370–378.
https://doi.org/10.3744/SNAK.2008.45.4.370
Al-Obaidi, A. R. (2019). Investigation of fluid field analysis, characteristics of pressure drop and improvement of heat transfer in three-dimensional circular corrugated pipes.
Journal of Energy Storage,
26, 101012.
https://doi.org/10.1016/j.est.2019.101012
Amarante Mesquita, A. L., Araújo, A. V., Pacha, R., Souza, J. M. R., & Tachibana, T. (2015). River school boat for safely transporting students in Portuguese. Proceedings of the 24th Pan-American Conference of Naval Engineering, Maritime Transport and Port Engineering, Copinaval, Montevideo, Uruguay, October.
Amarante Mesquita, A. L., Cruz, D. O. A., Serra, C. M. V., & Manzanares Filho, N. (1999). A simplified method for axial-flow turbomachinery design. Journal of the brazilian society of mechanical sciences and engineering, 21(1), 61-70.
ANSYS TurboGrid Tutorials. (2015). ANSYS TurboGrid. ANSYS, Inc. Canonsburg, PA 15317 USA.
Assi, G. R. S., Meneghini, J. R., Aranha, J. A. P., Coleto, W. G. (2005).
Design, assembling and verification of a circulating Water channel facility for fluid dynamics experiments. 18th International Congress of Mechanical Engineering, Ouro Preto, MG, Brazil.
https://www.abcm.org.br/anais/cobem/2005/PDF/COBEM2005-1238.pdf
Choi, J. K., Kim, H. T., Lee, C. S., & Lee, S. J. (2021). A numerical study on axial pump performance for large cavitation channel operation,
Processes,
9, 1523.
https://doi.org/10.3390/pr9091523
Cruz, A. G. B., Amarante Mesquita, A. L., & Blanco, C. J. C. (2008). Minimum pressure coefficient criterion applied in axial-flow hydraulic turbines,
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
30(1), 30-38.
https://doi.org/10.1590/S1678-58782008000100005
Denton, J. D. (2010). Some limitations of turbomachinery CFD. ASME Turbo Expo, Glasgow, UK.
Dönmez, A. H., Yumurtacı, Z., & Kavurmacıoğlu, L. (2023). Influence of inlet vane and wrap angles on cavitation behavior of a centrifugal pump.
Journal of Applied Fluid Mechanics, 16(3), 519–531.
https://doi.org/10.47176/jafm.16.03.1342.
Drela, M. (June 5-7).
XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds Number Aerodynamics: Proceedings of the Conference Notre Dame, Indiana, USA, Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-84010-4_1
Fernandes, E. C. (1973). Analysis of the geometric parameter influences on the axial-flow turbomachine design, in Portuguese. [Master's thesis, Technologic Institute of Aeronautic]. São José dos Campos.
Grinberg, M., Padovezi, C. D., & Tachibana, T. (2011). Use of Small Scale Model Tests to define optimized ship shapes. XXII Copinaval – IPIN, Buenos Aires.
Guo, B., Wang, D., Zhou, J., Shi, W., & Zhou, X. (2020). Performance evaluation of a submerged tidal energy device with a single mooring line.
Ocean Engineering,
196, 106791.
https://doi.org/10.1016/j.oceaneng.2019.106791
Haghighi, M. H. S., Mirghavami, S. F., Chini, S. M., & Riasi, A. (2019). Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades,
Renew Energy,
135, 266-276.
https://doi.org/10.1016/j.renene.2018.12.024
Holanda, P. S., Blanco, C. J. C., Amarante Mesquita, A. L., Brasil Junior, A. C. P., Figueiredo, N. M., Macêdo, E. N., & Secretan, Y. (2017). Assessment of hydrokinetic energy resources downstream of hydropower plants,
Renew Energy,
101, 1203–14.
https://doi.org/10.1016/j.renene.2016.10.011
Martinez, R., Ordonez Sanchez, S., Allmark, M., Lloyd, C., O’Doherty, T., Germain, G., Gaurier, B., & Johnstone, C. (2020). Analysis of the effects of control strategies and wave climates on the loading and performance of a laboratory scale horizontal axis tidal turbine,
Ocean Engineering, 212, 107713.
https://doi.org/10.1016/j.oceaneng.2020.107713
Menter, F. R., Matyushenko, A., & Lechner, R. (2020). Development of a generalized k-ω two-eq. turbulence model.
New Results in Numerical and Experimental Fluid Mechanics XII, 101–109.
https://doi.org/10.1007/978-3-030-25253-3_10
Nguyen, D. A., Ma, S. B., Kim, S., & Kim, J. H. (2023). Hydrodynamic optimization of the impeller and diffuser vane of an axial-flow pump.
Journal of Mechanical Science and Technology https://doi.org/10.1007/s12206-022-1217-0
Pinto, R. N., Afzal, A., D’Souza, L. V., Ansari, Z., & Samee, A. D. M. (2017). Computational fluid dynamics in turbomachinery: A review of state of the art.
Arch Computational Methods Eng,
24, 467–479.
https://doi.org/10.1007/s11831-016-9175-2
Scholz, N. (1965). Aerodinamik der Scaufelgitter. In I. Band G. Verlag (Eds.), Braun, Karlsruhe.
Shi, L. J., Tang, F. P., Liu, C., Xie, R. S., & Zhang, W. P. (2016). Optimal design of multi-conditions for axial flow pump.
Earth and Environmental Science,
49.
https://doi.org/10.1088/1755-1315/49/6/062028
Silva, P. A. S. F., Shinomiya, L. D., Oliveira, T. F., Vaz, J. R. P., Amarante Mesquita, A. L., & Brasil Junior, A. C. P. (2017). Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM.
Applied Energy,
185, 1281-1291.
https://doi.org/10.1016/j.apenergy.2016.02.098
Srinivasan, K. M. (2008). Rotodynamic pumps (Centrifugal and axial). New Age International Publishers.
Stephen, C. K. (1971). Design and construction of a water channel. National Science Foundation Project.
Tyacke, J., Vadlamani, N. R., Trojak, W., Watson, R., Ma, Y., & Tucker, P. G. (2019). Turbomachinery simulation challenges and the future.
Progress in Aerospace Sciences,
110, 100554.
https://doi.org/10.1016/j.paerosci.2019.100554
Wang, Z., Cheng, H., Bensow, R. E., Peng, X., & Ji, B. (2023). Numerical assessment of cavitation erosion risk on the Delft twisted hydrofoil using a hybrid Eulerian-Lagrangian strategy.
International Journal of Mechanical Sciences,
259, 108618,
https://doi.org/https://doi.org/10.1016/j.ijmecsci.2023.108618
Watanabe, T., Sato, H., Henmi, Y., Horiguchi, H., Kawata, Y., & Tsujimoto, Y. (2009). Rotating choke and choked surge in an axial pump impeller.
International Journal of Fluid Machinery and Systems.
2(3), 232–238.
https://doi.org/10.5293/IJFMS.2009.2.3.232
Wilcox, D. C. (2006). Turbulence Modeling for CFD. 3rd edition, DCW Industries, Inc., La Canada CA.
Wu, C. H. (1952).
A general theory of steady three-dimensional flow of a non-viscous fluid in Subsonic and Supersonic Turbomachines of Axial-, Radial, and Mixed-Flow Types. NACA, Washington.
http://hdl.handle.net/2060/19930083325
Xie, C., Zhang, C., Fu, T., Zhang, T., Feng, A., & Jin, Y. X. (2019). Numerical analysis and model test verification of energy and cavitation characteristics of axial flow pumps.
Water,
14(18), 2853.
https://doi.org/10.3390/w14182853.
Ye, J., Tan, L., Shi, W., Chen, C., & Francis, E. M. (2022). Numerical simulation of axial-flow pump cavitation based on variable frequency speed regulation.
Water,
14(17).
https://doi.org/10.3390/w14172757.
Zhang, Y., Najafi, M. J., Heydari Beni, M. H., Davar, A., Toghraie, D., Shafiee, B. M., Jam, J. E., & Hekmatifar, M. (2022). The effects of geometric shapes at different assembly gaps to achieve the optimal hydrodynamic conditions.
Renew Energy, 184, 452-459.
https://doi.org/10.1016/j.renene.2021.11.099