Ali, Q. S., & Kim, M. H. (2020). Unsteady aerodynamic performance analysis of an airborne wind turbine under load varying conditions at high altitude.
Energy Conversion and Management,
210, 112696.
https://doi.org/10.1016/j.enconman.2020.112696.
Carter, A. D. S. (1961). Blade profiles for axial flow fans, pumps and compressors, etc. unpacking the unique relationship between set for variability and word reading development: examining word- and child-level predictors of performance. Proceedings of the Institution of Mechanical Engineers, 175(1), 775–806. https://doi.org/10.1243/PIME_PROC_1961_175_051
Cui, T., Wang, S., Tang, X., Wen, F., & Wang, Z. (2019). Effect of leading-edge optimization on the loss characteristics in a low-pressure turbine linear cascade. Journal of Thermal Science, 28, 886–904. https://doi.org/10.1007/s11630-019-1196-3
Cumpsty, N. A. (2004). Compressor aerodynamics. Longman Scientific & Technical.
Gao, L., Ma, C., & Cai, Yu. (2019). A robust blade design method based on non-intrusive polynomial chaos considering profile error.
Journal of Thermal Science,
28(9), 875-885.
https://doi.org/10.1007/s11630-019-1185-6
Gao, L., Ma, C., Cai, M., Li, R., Wang, H., & Yang, G. (2022). Influence of uncertain inflow conditions on a subsonic compressor cascade based on wind tunnel experiment.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(15), 8285-8299.
https://doi.org/10.1177/09544062221087584
Gao, L., Wang, H., Yang, G., Ma, C., Huang, P., & Tang, K. (2023). Discussion on machining defects of blade leading edge and aerodynamic qualification.
Journal of Propulsion Technology,
44(1), 81-90.
https://doi.org/10.13675/j.cnki.tjjs.22010031
Garzón, V. E. (2002). Probabilistic aerothermal design of compressor airfoils. [Doctoral dissertation, Massachusetts Institute of Technology].
Goodhand, M. N. (2010). Compressor leading edges. [Doctoral dissertation, Cambridge University].
Goodhand, M. N., & Miller, R. J. (2009). Compressor leading edge spikes: a new performance criterion. Journal of Turbomachinery, 133(2), 021006. https://doi.org/10.1115/1.4000567
Goodhand, M. N., Miller, R. J., & Lung, H. W. (2012, June 11-15)
The sensitivity of 2d compressor incidence range to in-service geometric variation. [Conference session]. Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 8: Turbomachinery, Parts A, B, and C. Copenhagen, Denmark. 159-170.
https://doi.org/10.1115/GT2012-68633
Goodhand, M. N., Miller, R. J., & Lung, H. W. (2015). The impact of geometric variation on compressor two-dimensional incidence range.
Journal of Turbomachinery,
137(2), 021007.
https://doi.org/10.1115/1.4028355
Guo, Z., Chu, W., & Zhang, H. (2022). A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors.
Aerospace Science and Technology,
129, 107802.
https://doi.org/ 10.1016/j.ast.2022.107802
Guo, Z., Chu, W., & Zhang, H. (2023). Effects of inlet incidence perturbations on compressor cascade performance using adaptive sparse grid collocation.
Journal of Applied Fluid Mechanics,
16(6), 1281-1295.
https://doi.org/10.47176/jafm.16.06.1638
Hamakhan, I. A., & Korakianitis, T. (2010). Aerodynamic performance effects of leading-edge geometry in gas-turbine blades. Applied Energy, 87(5), 1591-1601. https://doi.org/10.1016/j.apenergy.2009.09.017
Hanson, R. E., Buckley, H. P., & Lavoie, P. (2012). Aerodynamic optimization of the flat-plate leading edge for experimental studies of laminar and transitional boundary layers.
Experiments in Fluids,
53(4), 863-871.
https://doi.org/10.1007/s00348-012-1324-2
Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G., & Völker, S. (2004). A correlation-based transition model using local variables—part ii: test cases and industrial applications. ASME.
Journal of Turbomachinery, 423-434.
https://doi.org/10.1115/1.2184353
Lejon, M., Andersson, N., Ellbrant, L., & Mårtensson, H. (2020). The impact of manufacturing variations on performance of a transonic axial compressor rotor.
Journal of Turbomachinery,
142(8), 081009.
https://doi.org/10.1115/1.4046617
Li, R., Gao, L., Zhang, S., Li, Y., & Gao, T. (2018). Application of shear-sensitive liquid crystal coating to visualization of transition and reattachment in compressor cascade.
Chinese Journal of Aeronautics,
31(11), 2073-2079.
https://doi.org/10.1016/j.cja.2018.06.003
Liu, B., Yuan, X., & Yu, X. (2013). Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil. Journal of Propulsion Technology, 34(7), 890-897. https://doi.org/10.13675/j.cnki.tjjs.2013.07.006
Liu, H., Liu, B., Li, L., & Jiang, H. (2003, June 16–19).
Effect of leading-edge geometry on separation bubble on a compressor blade [Conference session]. Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. Parts A and B, Atlanta, Georgia, USA. 387-395.
https://doi.org/10.1115/GT2003-38217
Liu, J., Yu, X., Meng, D., Shi, W., & Liu, B. (2021). State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage.
Acta Aeronautica et Astronautica Sinica,
42(2), 423796.
https://doi.org/10.7527/S1000-6893.2020.23796
Lu, H., & Xu, L. (2003). Circular leading edge with a flat for compressor blades. Journal of Propulsion Technology, 24(6), 532-536. https://doi.org/10.13675/j.cnki.tjjs.2003.06.014
Ma, C., Gao L., & Cai, Y. (2017, June 26–30).
Robust optimization design of compressor blade considering machining error. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery. Charlotte, North Carolina, USA. V02CT47A003. ASME.
https://doi.org/10.1115/GT2017-63157
Ma, C., Gao, L., Wang, H., Li, R., & Wu, B. (2021). Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades.
Chinese Journal of Aeronautics,
34(6), 220-232.
https://doi.org/10.1016/j.cja.2020.08.018
Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., & Völker, S. (2004). A correlation-based transition model using local variables—part i: model formulation.
Journal of Turbomachinery. 413-422.
https://doi.org/10.1115/1.2184352
Song, Y., Gu, C., & Xiao, Y. (2014). Numerical and theoretical investigations concerning the continuous-surface-curvature effect in compressor blades. Energies, 7(12), 8150-8177. https://doi.org/10.3390/en7128150
Walraevens, R. E., & Cumpsty, N. A. (1995). Leading edge separation bubbles on turbomachine blades. Journal of Turbomachinery, 117(1), 115-125. https://doi.org/10.1115/1.2835626
Wang, H., Gao, L., Yang, G., & Wu, B. (2023). A robust data-driven uncertainty quantification method and its application in compressor cascade.
Acta Aeronautica et Astronautica Sinica, 44, 628169.
https://doi.org/10.7527/S10006893.2023.28169
Wheeler, A. P. S., & Miller, R. J. (2008, June 9-13).
Compressor wake/leading-edge interactions at Off design incidences. [Conference session]. Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A, B, and C, Berlin, Germany. 1795-1806.
https://doi.org/10.1115/GT2008-50177
Wheeler, A. P. S., Sofia, A., & Miller, R. J. (2009). The effect of leading-edge geometry on wake interactions in compressors.
Journal of Turbomachinery,
131(4), 041013.
https://doi.org/10.1115/1.3104617
Yang, G., Gao, L., Wang, H., & Cai, M. (2021) Asymmetric leading edge design of diffusion cascade based on NURBS. Journal of Aerospace Power, 36(03), 655-663. https://doi.org/10.13224/j.cnki.jasp.2021.03.021
Yang, G., Gao, L., Wang, H., & Chang, L. (2022). Influence of leading edge point on aerodynamic performance of asymmetric leading edge compressor airfoils. International Journal of Turbo & Jet-Engines. https://doi.org/10.1515/tjj-2021-0054.
Yang, G., Gao, L., Zhao, L., & Lin, S. (2020). Effect of asymmetric leading edge on aerodynamic performance of diffusion cascade. Journal of Engineering Thermophysics, 41(10), 75-80.