Ahuja, K., & Mendoza, J. (1995).
Effects of cavity dimensions, boundary layer, and temperature in cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes. United States: NASA CR-4653.
https://ntrs.nasa.gov/citations/19950018459
Arguillat, B., Ricot, D., Robert, G., & Bailly, C. (2005).
Measurements of the wavenumber-frequency spectrum of wall pressure fluctuations under turbulent flows. 11th AIAA/CEAS Aeroacoustics Conference. Monterey, California, AIAA paper 2005-2855.
https://arc.aiaa.org/doi/abs/10.2514/6.2005-2855
Ashcroft, G., & Zhang, X. (2001).
A computational investigation of the noise radiated by flow-induced cavity oscillations. 39th Aerospace Sciences Meeting and Exhibit. Reno, NV, U.S.A., AIAA paper 2001-512.
https://arc.aiaa.org/doi/abs/10.2514/6.2001-512
Casalino, D., Gonzalez-Martino, I., & Mancini, S. (2022). On the rossiter-heller frequency of resonant cavities.
Aerospace Science and Technology,
131(2022), 108013.
https://doi.org/10.1016/j.ast.2022.108013
Chen, G.Y., Tang, X. L., Yang, X. Q., Weng, P.F, & Ding, J. (2021). Noise control for high-lift devices by slat wall treatment.
Aerospace Science and Technology,
115(2021), 106820.
https://doi.org/10.1016/j.ast.2021.106820
Dalmont, J. P., Nederveen, C. J., & Joly, N. (2001). Radiation impedance of tubes with different flanges: numerical and experimental investigations.
Journal of Sound and Vibration,
244, 505–534.
https://doi.org/10.1006/jsvi.2000.3487
Ffowcs-Williams, J. E., & Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion.
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264 321–342.
https://doi.org/10.1098/rsta.1969.0031
Forestier, N. (2000).
Etude experimentale d’une couche cisaillee au-dessus d’une Cavite en regime transsonique. France: Ecole Centrale de Lyon (in French).
https://doi.org/10.1007/BF00122093
Guo, R., Chen, X., Wan, Z., Hu, H., & Cui, S. (2022). Noise reduction in cavity flow by addition of porous media.
Acta Mechanica Sinica 38, 321358.
https://doi.org/10.1007/s10409-021-09043-x
Guo, Z. (2020). Investigation on aeroacoustic noise mechanism and noise control methods of cavity structure in landing gear. China: Beihang University. (in Chinese).
Guo, Z., Liu, P., & Guo, H. (2021). Control effect on deep cavity noise by slanted walls at low Mach numbers.
Journal of Vibration and Control,
27(9-10), 998-1008.
https://doi.org/10.1177/1077546320936510
Ji, M., & Wang, M. (2012). Surface pressure fluctuations on steps immersed in turbulent boundary layers.
Journal of Fluid and Mechanics, 7(12), 471-504.
https://doi.org/10.1017/jfm.2012.433
Larcheveque, L., Pierre, S., Ivan, M., Labbe, O & Comte, P. (2003). Large-eddy simulation of a compressible flow past a deep cavity.
Physics of Fluids,
15, 193.
https://doi.org/10.1017/jfm.2012.433
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598–1605.
https://doi.org/10.2514/3.12149
Rockwell, D., & Naudascher, E. (1978). Review: Self-sustaining Oscillations of flow past cavities.
Journal of Fluids Engineering, Transactions of the ASME.
100 (2), 152-165.
https://doi.org/10.1115/1.3448624
Rossiter, J. E. (1964).
Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds. Netherlands: Ministry of Aviation, Royal Aircraft Establishment; RAE Memoranda, RAE Technical Report: 64037.
https://reports.aerade.cranfield.ac.uk/handle/1826.2/4020
Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities.
International Journal of Heat and Fluid Flow, 29(6), 1638-1649.
https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
Spalart, P. R. (1997). Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES, Greyden Press, Columbus, OH, USA.
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities.
Theoretical and Computational Fluid Dynamics, 20(3), 181-195.
https://doi.org/10.1007/s00162-006-0015-0
Vadsola, M., Agbaglah, G. G., & Mavriplis, C. (2021). Slat cove dynamics of low Reynolds number flow past a 30P30N high lift configuration.
Physics of Fluids,
33(3), 033607.
https://doi.org/10.1063/5.0036088
Zhao, K., Okolo, P., Neri, E., Chen, P., Kennedy, J., & Bennett, G. J. (2020). Noise reduction technologies for aircraft landing gear-A bibliographic review.
Progress in Aerospace Sciences,
112, 100589.
https://doi.org/10.1016/j.paerosci.2019.100589