Ballossier, Y., Virot, F., & Melguizo-Gavilanes, J. (2021). Flame propagation and acceleration in narrow channels: Sensitivity to facility specific parameters.
Shock Waves,
31(4), 307-321.
https://doi.org/10.1007/s00193-021-01015-9
Boeck, L. R., Berger, F. M., Hasslberger, J., & Sattelmayer, T. (2016). Detonation propagation in hydrogen–air mixtures with transverse concentration gradients.
Shock Waves,
26(2), 181-192.
https://doi.org/10.1007/s00193-015-0598-8
Chen, C. k., Zhang, Y. l., Zhao, X. l., Lei, P., & Nie, Y .l. (2020). Experimental study on the influence of obstacle aspect ratio on ethanol liquid vapor deflagration in a narrow channel.
International Journal of Thermal Sciences,
153, 106354.
https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2020.106354
Chen, P., Sun, Y., Li, Y., & Luo, G. (2017). Experimental and LES investigation of premixed methane/air flame propagating in an obstructed chamber with two slits.
Journal of Loss Prevention in the Process Industries,
49, 711-721.
https://doi.org/https://doi.org/10.1016/j.jlp.2016.11.005
Dai, Q., Zhang, S., Zhang, S., Sun, H., & Huang, M. (2021). Large eddy simulation of premixed CH4/Air deflagration in a duct with obstacles at different heights.
ACS Omega,
6(41), 27140-27149.
https://doi.org/10.1021/acsomega.1c03814
Debnath, P., & Pandey, K. M. (2023a). Numerical analysis on detonation wave and combustion efficiency of pulse detonation combustor with U-Shape combustor.
Journal of Thermal Science and Engineering Applications,
15(10).
https://doi.org/10.1115/1.4062702
Debnath, P., & Pandey, K. M. (2023b). Numerical studies on detonation wave in hydrogen-fueled pulse detonation combustor with shrouded ejector.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
45(2), 104.
https://doi.org/10.1007/s40430-023-04036-w
Di Lullo, G., Giwa, T., Okunlola, A., Davis, M., Mehedi, T., Oni, A. O., & Kumar, A. (2022). Large-scale long-distance land-based hydrogen transportation systems: A comparative techno-economic and greenhouse gas emission assessment.
International Journal of Hydrogen Energy,
47(83), 35293-35319.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.08.131
Gao, J. F., Ai, B. J., Hao, B., Guo, B. G., Hong, B. Y., & Jiang, X. S. (2022). Effect of obstacles gradient arrangement on non-uniformly distributed LPG-Air Premixed gas deflagration.
Energies,
15(19), 6872.
https://doi.org/10.3390/en15196872
Gong, Y., & Li, Y. (2018). STAMP-based causal analysis of China-Donghuang oil transportation pipeline leakage and explosion accident.
Journal of Loss Prevention in the Process Industries,
56.
https://doi.org/10.1016/j.jlp.2018.10.001
Guo, B., Gao, J., Hao, B., Ai, B., Hong, B., & Jiang, X. (2022). Experimental and numerical study on the explosion dynamics of the non-uniform liquefied petroleum gas and air mixture in a channel with mixed obstacles.
Energies,
15(21), 7999.
https://doi.org/10.3390/en15217999
Hao, B., Gao, J. F., Guo, B. G., Ai, B. J., Hong, B. Y., & Jiang, X. S. (2022). Numerical simulation of premixed methane-air explosion in a closed tube with U-Type obstacles.
Energies,
15(13), 4909.
https://doi.org/10.3390/en15134909
Hong, S., Lee, W., Kang, S., & Song, H. H. (2015). Analysis of turbulent diffusion flames with a hybrid fuel of methane and hydrogen in high pressure and temperature conditions using LES approach.
International Journal of Hydrogen Energy,
40(35), 12034-12046.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.05.081
Ji, T., Qian, X., Yuan, M., Wang, D., He, J., Xu, W., & You, Q. (2017). Case study of a natural gas explosion in Beijing, China.
Journal of Loss Prevention in the Process Industries.
https://doi.org/10.1016/j.jlp.2017.07.013
Korytchenko, K., Senderowski, C., Samoilenko, D., Poklonskiy, E., Varshamova, I., & Maksymov, A. (2022). Numerical analysis of the spark channel expansion in a high-pressure hydrogen-oxygen mixture and in nitrogen.
Shock Waves,
32(4), 321-335.
https://doi.org/10.1007/s00193-022-01077-3
Li, G. Q., Du, Y., Wang, S. M., Qi, S., Zhang, P. L., & Chen, W. Z. (2017). Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe.
Journal of Hazardous Materials,
339, 131-142.
https://doi.org/10.1016/j.jhazmat.2017.06.018
Li, G. Q., Wu, J., Wang, S. M., Bai, J., Wu, D. J., & Qi, S. (2021). Effects of gas concentration and obstacle location on overpressure and flame propagation characteristics of hydrocarbon fuel-air explosion in a semi-confined pipe.
Fuel,
285, 119268.
https://doi.org/10.1016/j.fuel.2020.119268
Li, M., Liu, D., Shen, T., Sun, J., & Xiao, H. (2022b). Effects of obstacle layout and blockage ratio on flame acceleration and DDT in hydrogen-air mixture in a channel with an array of obstacles.
International Journal of Hydrogen Energy,
47(8), 5650-5662.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.11.178
Li, X., Dong, J., Jin, K., Duan, Q., Sun, J., Li, M., & Xiao, H. (2022c). Flame acceleration and deflagration-to-detonation transition in a channel with continuous triangular obstacles: Effect of equivalence ratio.
Process Safety and Environmental Protection,
167, 576-591.
https://doi.org/https://doi.org/10.1016/j.psep.2022.09.033
Li, Y., Xie, H., Bi, M., Bo, Y., & Gao, W. (2022d). Effects of cloud size and built-in obstacles on hydrogen cloud explosion using large eddy simulation.
Journal of Loss Prevention in the Process Industries,
77, 104788.
https://doi.org/https://doi.org/10.1016/j.jlp.2022.104788
Luo, Z. M., Kang, X. F., Wang, T., Su, B., Cheng, F. M., & Deng, J. (2021). Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct.
Energy,
234, Article 121291.
https://doi.org/10.1016/j.energy.2021.121291
Lv, X., Zheng, L., Zhang, Y., Yu, M., & Su, Y. (2016). Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–air explosion.
International Journal of Hydrogen Energy,
41(39), 17740-17749.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2016.07.263
Nicoud, F. D. F. (1999). Subgrid-Scale stress modelling based on the square of the velocity gradient tensor.
Flow, Turbulence and Combustion,
62(3), 183-200.
https://doi.org/10.1023/A:1009995426001
Pan, C., Sun, H., Zhu, X., Zhao, J., Wang, X., & Liu, Y. (2022a). Vented ethanol-gasoline vapor explosions initiated by two symmetric sparks in a channel.
Fuel,
329, 125499.
https://doi.org/https://doi.org/10.1016/j.fuel.2022.125499
Pan, C., Wang, X., Sun, H., Zhu, X., Zhao, J., Fan, H., & Liu, Y. (2022b). Large-eddy simulation and experimental study on effects of single-dual sparks positions on vented explosions in a channel.
Fuel,
322, 124282.
https://doi.org/https://doi.org/10.1016/j.fuel.2022.124282
Qiming, X., Guohua, C., Qiang, Z., & Shen, S. (2022). Numerical simulation study and dimensional analysis of hydrogen explosion characteristics in a closed rectangular duct with obstacles.
International Journal of Hydrogen Energy,
47(92), 39288-39301.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.09.091
Shen, X., Shen, J., Liu, H., Wen, J. X., Ma, Y., Zou, X., & Liu, Z. (2023). Numerical investigation on dynamic behavior of premixed hydrogen/air flame propagation in a closed tube.
Fuel,
354, 129295.
https://doi.org/https://doi.org/10.1016/j.fuel.2023.129295
Sheng, Z., Yang, G., Gao, W., Li, S., Shen, Q., & Sun, H. (2023). Study on the dynamic process of premixed hydrogen-air deflagration flame propagating in a closed space with obstacles.
Fuel,
334, 126542.
https://doi.org/https://doi.org/10.1016/j.fuel.2022.126542
Wang, H., Tong, Z., Zhou, G., Zhang, C., Zhou, H., Wang, Y., & Zheng, W. (2022a). Research and demonstration on hydrogen compatibility of pipelines: a review of current status and challenges.
International Journal of Hydrogen Energy,
47(66), 28585-28604.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.06.158
Wang, Q., Luo, X. J., Li, Q., Rui, S. C., Wang, C. J., & Zhang, A. F. (2022b). Explosion venting of hydrogen-air mixture in an obstructed rectangular tube.
Fuel,
310, Article 122473.
https://doi.org/10.1016/j.fuel.2021.122473
Wang, S., Xiao, G., Mi, H., Feng, Y., & Chen, J. (2023). Experimental and numerical study on flame fusion behavior of premixed hydrogen/methane explosion with two-channel obstacles.
Fuel,
333, 126530.
https://doi.org/https://doi.org/10.1016/j.fuel.2022.126530
Wang, T., Yang, P., Yi, W., Luo, Z., Cheng, F., Ding, X., Kang, X., Feng, Z., & Deng, J. (2022c). Effect of obstacle shape on the deflagration characteristics of premixed LPG-air mixtures in a closed tube.
Process Safety and Environmental Protection,
168, 248-256.
https://doi.org/https://doi.org/10.1016/j.psep.2022.09.079
Wen, X., Ding, H., Su, T., Wang, F., Deng, H., & Zheng, K. (2017). Effects of obstacle angle on methane–air deflagration characteristics in a semi-confined chamber.
Journal of Loss Prevention in the Process Industries,
45, 210-216.
https://doi.org/https://doi.org/10.1016/j.jlp.2017.01.007
Wen, X., Yu, M., Liu, Z., Li, G., Ji, W., & Xie, M. (2013). Effects of cross-wise obstacle position on methane–air deflagration characteristics.
Journal of Loss Prevention in the Process Industries,
26(6), 1335-1340.
https://doi.org/https://doi.org/10.1016/j.jlp.2013.08.006
Xiao, G. Q., Wang, S., Mi, H. F., & Khan, F. (2022). Analysis of obstacle shape on gas explosion characteristics.
Process Safety and Environmental Protection,
161, 78-87.
https://doi.org/10.1016/j.psep.2022.03.019
Xiao, H., wang, Q., Shen, X., Guo, S., & Sun, J. (2013). An experimental study of distorted tulip flame formation in a closed duct.
Combustion and Flame,
160(9), 1725-1728.
https://doi.org/https://doi.org/10.1016/j.combustflame.2013.03.011
Zhao, B., Li, S., Gao, D., Xu, L., & Zhang, Y. (2022). Research on intelligent prediction of hydrogen pipeline leakage fire based on Finite Ridgelet neural network.
International Journal of Hydrogen Energy,
47(55), 23316-23323.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.05.124
Zimont, V. L., & Battaglia, V. (2005). Joint RANS/LES approach to premixed flames modelling in the context of the TFC combustion model.
Engineering Turbulence Modelling and Experiments 6,
77(1-4), 905-914.
https://doi.org/10.1016/B978-008044544-1/50087-X