Ajith, K. R., Arunkumar, K., & Hariprasad, C. M. (2015). Effect of dissimilar leading edges on the flow structures around a square cylinder.
Journal of Pressure Vessel Technology, 137(6).
https://doi.org/10.1115/1.4029656
Bi, J., Yu, H., & Ren, H. (2012). Two dimensional numerical simulation of flow over a static square cylinder and a static circular cylinder.
Journal of China Three Gorges University (Natural Sciences),
34(1), 41-45.
https://doi.org/10.3969/j.issn.1672-948X.2012.01.010
Cakir, E., Akinturk, A., & Allievi, A. (2015, May). A numerical study of fluid structure interaction of a flexible submerged cylinder mounted on an experimental rig.
International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers.
https://doi.org/10.1115/OMAE2015-42219
Cheng, Y., Duan, D., Liu, X., Yang, X., Zhang, H., & Han, Q. (2022). Numerical study on hydrodynamic performance of underwater manipulator in the subcritical region.
Ocean Engineering,
262, 112214.
https://doi.org/10.1016/j.oceaneng.2022.112214
Chen, H. L., Dai, S. S., Li, J., & Yao, X. L. (2009). Three-dimensional numerical simulation of the flow past a circular cylinder based on LES method.
Journal of Marine Science and Application,
2(8), 110-116.
https://doi.org/10.1007/s11804-009-8110-4
Chen, J. M., & Liu, C. H. (1999). Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream.
International Journal of Heat and Fluid Flow,
20(6), 592-597.
https://doi.org/10.1016/S0142-727X(99)00047-8
Chae, J., Yeu, T., Lee, Y., Lee, Y., & Yoon, S. M. (2020). Trajectory tracking performance analysis of underwater manipulator for autonomous manipulation.
Journal of Ocean Engineering and Technology,
34(3), 180-193.
https://doi.org/10.26748/KSOE.2019.092
Du, Q., Mao, H. Y., & Li, Y. J. (2017) Hydrodynamic characteristics and numerical simulation of flow around square cylinders at different filleting radii.
Marine Sciences.
41(07), 137-142.
https://doi.org/10.11759/hykx20161120001
Fan, S. B., Lian, L., & Ren, P. (2012). Research on hydrodynamics model test for deepsea open-framed remotely operated vehicle.
China Ocean Engineering,
26(2), 329-339.
https://doi.org/10.1007/s13344-012-0025-1
Fu, M. Y., Wang, S. S., & Wang, Y. H. (2019). Multi-behavior fusion based potential field method for path planning of unmanned surface vessel.
China Ocean Engineering,
3(5), 583-592.
https://doi.org/10.1007/s13344-019-0056-y
Hölscher, N., & Niemann, H. J. (1996). Turbulence and separation induced pressure fluctuations on a finite circular cylinder—application of a linear unsteady strip theory.
Journal of Wind Engineering and Industrial Aerodynamics,
65(1-3), 335-346.
https://doi.org/10.1016/S0167-6105(97)00051-2.
Irwin, R. P., & Chauvet, C. (2007, June).
Quantifying hydrodynamic coefficients of complex structures. OCEANS 2007-Europe, IEEE.
https://doi.org/10.1109/OCEANSE.2007.4302443
Kolodziejczyk, W. (2015). Preliminary study of hydrodynamic load on an underwater robotic manipulator.
Journal of Automation Mobile Robotics and Intelligent Systems,
9. https://doi.org/
10.14313/JAMRIS_4-2015/28
Kołodziejczyk, W. (2016). Some considerations on an underwater robotic manipulator subjected to the environmental disturbances caused by water current.
Acta Mechanica et Automatica,
10(1), 43-49.
https://doi.org/10.1515/ama-2016-0008
Kharghani, M., & PasandidehFard, M. (2022). Turbulence structures in accelerated flow over a flat plate with non-zero pressure gradient
. Journal of Applied Fluid Mechanics, 15(2), 311-324.
https://doi.org/10.47176/JAFM.15.02.32337
Lyn, D. A., Einav, S., Rodi, W., & Park, J. H. (1995). A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder.
Journal of Fluid Mechanics, 304, 285-319.
https://doi.org/10.1017/S0022112095004435.
Mathur, A., Gorji, S., He, S., Seddighi, M., Vardy, A., O’Donoghue, T., & Pokrajac, D. (2018). Temporal acceleration of a turbulent channel flow.
Journal of Fluid Mechanics, 835, 471-490.
https://doi.org/10.1017/jfm.2017.753.
McLain, T. W., & Rock, S. M. (1998). Development and experimental validation of an underwater manipulator hydrodynamic model.
The International Journal of Robotics Research,
17(7), 748-759.
https://doi.org/10.1177/027836499801700705.
PasandidehFard, M., & Naeimirad, M. (2022). Turbulent transient boundary layer over a flat plate. Ocean Engineering, 244, 110192.
Qu, S., Liu, S. N., & Ong, M. C. (2021). An evaluation of different RANS turbulence models for simulating breaking waves past a vertical cylinder. Ocean Engineering, 234, 109195.
Racine, B., & Paterson, E. (2005, June).
CFD-based method for simulation of marine-vehicle maneuvering. 35th AIAA Fluid Dynamics Conference and Exhibit.
https://doi.org/10.2514/6.2005-4904
Safari, F., Rafeeyan, M., & Danesh, M. (2022). Estimation of hydrodynamic coefficients and simplification of the depth model of an AUV using CFD and sensitivity analysis.
Ocean Engineering,
263, 112369.
https://doi.org/10.1016/j.oceaneng.2022.112369
Wang, X., Jia, Y. Y., Zheng, Y. F., & Fu, S. F. (2021, September).
Numerical simulation of flow around a quasi-square column with Re=6.8×104. Proceedings of the 30th National Conference on structural Eng.
https://doi.org/10.26914/c.cnkihy.2021.019108
Xu, G., Shen, X., & Yu, K. (2013). Modeling and hydrodynamic performance for a deep ocean manipulator based on numerical approach.
Journal of Computers, 8(5), 1192-1199.
https://doi.org/10.4304/jcp.8.5.1192-1199
Zhang, M., Liu, X., & Tian, Y. (2019). Modeling analysis and simulation of viscous hydrodynamic model of single-DOF manipulator.
Journal of Marine Science and Engineering,
7(8), 261.
https://doi.org/10.3390/jmse7080261
Zhang, X. S., Wang, J. H., & Wan, D. C. (2020). Numerical techniques for coupling hydrodynamic problems in ship and ocean engineering.
Journal of Hydrodynamics,
32, 212-233.
https://doi.org/10.1007/s42241-020-0021-5