Ahmed, M. Y., & Qin, N. (2014). Investigation of flow asymmetry around axi-symmetric spiked blunt bodies in hypersonic speeds.
The Aeronautical Journal,
118(1200), 169-179.
https://doi.org/10.1017/S0001924000009052
Ahmed, M. Y., & Qin, N. (2020). Forebody shock control devices for drag and aero-heating reduction: A comprehensive survey with a practical perspective.
Progress in Aerospace Sciences,
112, 100585.
https://doi.org/10.1016/j.paerosci.2019.100585
Alexander, S. R. (1947). Results of Tests of determine the effect of a conical windshield on the drag of a bluff body at supersonic speeds. NACA PM No. L6KO8a
Anderson Jr, J. D., Lewis, M. J., Kothari, A. P., & Corda, S. (1991). Hypersonic waveriders for planetary atmospheres.
Journal of Spacecraft and Rockets,
28(4), 401-410.
https://doi.org/10.2514/3.26259
Betelin, V., Kushnirenko, A., Smirnov, N., Nikitin, V., Tyurenkova, V., & Stamov, L. (2018). Numerical investigations of hybrid rocket engines.
Acta Astronautica,
144, 363-370.
https://doi.org/10.1016/j.actaastro.2018.01.009
Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2020). Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer.
Journal of Building Engineering,
28, 101018.
https://doi.org/10.1016/j.jobe.2019.101018
Bogdonoff, S. M., & Vas, I. E. (1959). Preliminary investigations of spiked bodies at hypersonic speeds.
Journal of the Aerospace Sciences,
26(2), 65-74.
https://doi.org/10.2514/8.7945
Chinnappan, A. K., Malaikannan, G., & Kumar, R. (2017). Insights into flow and heat transfer aspects of hypersonic rarefied flow over a blunt body with aerospike using direct simulation Monte-Carlo approach.
Aerospace Science and Technology,
66, 119-128.
https://doi.org/10.1016/j.ast.2017.02.024
Crawford, D. H. (1959). Investigation of the flow over a spiked-nose hemisphere-cylinder at a Mach number of 6.8. National Aeronautics and Space Administration. NASA TN D-118
Dem'ianov, I. A., & Shmanenkov, V. (1960). Investigation of reverse flows in the region of separation of the turbulent boundary layer.
Journal of Applied Mathematics and Mechanics,
24(2), 340-343.
https://doi.org/10.1016/0021-8928(60)90037-X
Desai, S., Prakash K, V., Kulkarni, V., & Gadgil, H. (2020). Universal scaling parameter for a counter jet drag reduction technique in supersonic flows.
Physics of Fluids,
32(3), 036105.
https://doi.org/10.1063/1.5140029
Eghlima, Z., Mansour, K., & Fardipour, K. (2018). Heat transfer reduction using combination of spike and counterflow jet on blunt body at high Mach number flow.
Acta Astronautica,
143, 92-104.
https://doi.org/10.1016/j.actaastro.2017.11.012
Fujii, K., Tsuda, S., Koyama, T., & Hirabayashi, N. (2013).
Oscillation of bow-shock waves at hypersonic speeds. 43rd AIAA Fluid Dynamics Conference.
https://doi.org/10.2514/6.2013-3103
Guenther, R. A., & Reding, J. P. (1977). Fluctuating pressure environment of a drag reduction spike.
Journal of Spacecraft and Rockets,
14(12), 705-710.
https://doi.org/10.2514/3.57253
Han, G., & Jiang, Z. (2018). Hypersonic flow field reconfiguration and drag reduction of blunt body with spikes and sideward jets.
International Journal of Aerospace Engineering,
2018.
https://doi.org/10.1155/2018/7432961
Hayashi, K., Aso, S., & Tani, Y. (2005).
Numerical study of thermal protection system by opposing jet. 43rd AIAA Aerospace Sciences Meeting and Exhibit.
https://doi.org/10.2514/6.2005-188
Hayashi, K., Aso, S., & Tani, Y. (2006). Experimental study on thermal protection system by opposing jet in supersonic flow.
Journal of Spacecraft and Rockets,
43(1), 233-235.
https://doi.org/10.2514/1.15332
Holden, M. S. (1966). Experimental studies of separated flows at hypersonic speeds. I-Separated flows over axisymmetric spiked bodies.
AIAA Journal,
4(4), 591-599.
https://doi.org/10.2514/3.3494
Huang, J., Yao, W. X., & Shan, X. Y. (2019). Numerical investigation on drag and heat reduction mechanism of combined spike and rear opposing jet configuration.
Acta Astronautica,
155, 179-190.
https://doi.org/10.1016/j.actaastro.2018.11.039
Huang, W., Zhang, R. R., Yan, L., Ou, M., & Moradi, R. (2018). Numerical experiment on the flow field properties of a blunted body with a counterflowing jet in supersonic flows.
Acta Astronautica,
147, 231-240.
https://doi.org/10.1016/j.actaastro.2018.04.018
Ji, C., Liu, B., Huang, W., Li, S. B., & Yan, L. (2021). Investigation on the drag reduction and thermal protection properties of the porous opposing jet in the supersonic flow: A parametric study with constant mass flow rate.
Aerospace Science and Technology,
118, 107064.
https://doi.org/10.1016/j.ast.2021.107064
Kushnirenko, A., Stamov, L., Tyurenkova, V., Smirnova, M., & Mikhalchenko, E. (2021). Three-dimensional numerical modeling of a rocket engine with solid fuel.
Acta Astronautica,
181, 544-551.
https://doi.org/10.1016/j.actaastro.2021.01.028
Love, E. S. (1952). The effects of a small jet of air exhausting from the nose of a body of revolution in supersonic flow. National Advisory Committee for Aeronautics. NACA RM L52119a
Ma, K., Li, Y., Zhu, L., Chen, X., & Zhou, C. (2020). Spike root oblique jet effect on drag and heat load reduction performance for hypersonic vehicles.
Acta Astronautica,
177, 588-603.
https://doi.org/10.1016/j.actaastro.2020.08.023
Mair, W. (1952). LXVIII. Experiments on separation of boundary layers on probes in front of blunt-nosed bodies in a supersonic air stream.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
43(342), 695-716.
https://doi.org/10.1080/14786440708520987
Marley, C. D., & Riggins, D. W. (2011). Numerical study of novel drag reduction techniques for hypersonic blunt bodies.
AIAA Journal,
49(9), 1871-1882.
https://doi.org/10.2514/1.J050681
Mehta, R. (2000). Numerical heat transfer study over spiked blunt bodies at Mach 6.8.
Journal of Spacecraft and Rockets,
37(5), 700-703.
https://doi.org/10.2514/2.3622
Meng, Y. S., Yan, L., Huang, W., & Wang, Z. W. (2021). Fluid-thermal coupled investigation on the combinational spike and opposing/lateral jet in hypersonic flows.
Acta Astronautica,
185, 264-282.
https://doi.org/10.1016/j.actaastro.2021.05.022
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Milicev, S. S., & Pavlovic, M. D. (2002). Influence of spike shape at supersonic flow past blunt-nosed bodies: experimental study.
AIAA Journal,
40(5), 1018-1020.
https://doi.org/10.2514/2.1745
Motoyama, N., Mihara, K., Miyajima, R., Watanuki, T., & Kubota, H. (2001).
Thermal protection and drag reduction with use of spike in hypersonic flow. 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference.
https://doi.org/10.2514/6.2001-1828
Narayana, G., & Selvaraj, S. (2020). Attenuation of pulsation and oscillation using a disk at mid-section of spiked blunt body.
Physics of Fluids,
32(11), 116106.
https://doi.org/10.1063/5.0024649
Ou, M., Yan, L., Huang, W., & Zhang, T. T. (2019). Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model.
Acta Astronautica,
155, 287-301.
https://doi.org/10.1016/j.actaastro.2018.12.012
Piland, R. O., & Putland, L. W. (1956). Zero-Lift drag of several conical and blunt nose shapes obtained in free flight at mach numbers of 0.7 to 1.3. RM L54A27
Qin, Q., Xu, J., & Guo, S. (2018). Reduction of aeroheating and drag using lateral/oblique/opposing jet on aerodome.
Journal of Spacecraft and Rockets,
55(2), 523-527.
https://doi.org/10.2514/1.A34041
Qu, F., Sun, D., Bai, J., Zuo, G., & Yan, C. (2018). Numerical investigation of blunt body’s heating load reduction with combination of spike and opposing jet.
International Journal of Heat and Mass Transfer,
127, 7-15.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.154
Raman, S. K., Kexin, W., Kim, T. H., Suryan, A., & Kim, H. D. (2020). Effects of flap on the reentry aerodynamics of a blunt cone in the supersonic flow.
International Journal of Mechanical Sciences,
176, 105396.
https://doi.org/10.1016/j.ijmecsci.2019.105396
Rashid, S., Nawaz, F., Maqsood, A., Riaz, R., & Salamat, S. (2019). Shock reduction through opposing jets—aerodynamic performance and flight stability perspectives.
Applied Sciences,
10(1), 180.
https://doi.org/10.3390/app10010180
Rashid, S., Nawaz, F., Maqsood, A., Salamat, S., Riaz, R., Dala, L., & Ahmad, R. (2021). Modeling and analysis of shock reduction through counterflow plasma jets.
Mathematical Problems in Engineering,
2021.
https://doi.org/10.1155/2021/5592855
Renane, R., Allouche, R., Zmit, O., & Bouchama, B. (2022).
Aero Heating Optimization of a Hypersonic Thermochemical Non-Equilibrium Flow around Blunt Body by Application of Opposing Jet and Blunt Spike. Hypersonic Vehicles-Applications, Recent Advances, and Perspectives. IntechOpen.
https://doi.org/10.5772/intechopen.101659
Romeo, D. J. (1963). Exploratory investigation of the effect of a forward-facing jet on the bow shock of a blunt body in a Mach number 6 free stream. NASA TN, TN D-1605. NASA TN D-1605
Sahoo, D., Das, S., & Cohen, J. (2019).
Effect of body nose fairing on the unsteady flow characteristics over spiked flat faced cylinder at supersonic speed. AIAA Scitech 2019 Forum.
https://doi.org/10.2514/6.2019-2316
Saravanan, S., Jagadeesh, G., & Reddy, K. (2009). Investigation of missile-shaped body with forward-facing cavity at Mach 8.
Journal of Spacecraft and Rockets,
46(3), 577-591.
https://doi.org/10.2514/1.38914
Seiler, F., Srulijes, J., Gimenez Pastor, M., & Mangold, P. (2007).
Heat fluxes inside a cavity placed at the nose of a projectile measured in a shock tunnel at Mach 4.5. New results in numerical and experimental fluid mechanics VI. Springer.
https://doi.org/10.1007/978-3-540-74460-3_38
Sharma, K., & Nair, M. T. (2020). Combination of counterflow jet and cavity for heat flux and drag reduction.
Physics of Fluids,
32(5), 056107.
https://doi.org/10.1063/1.5143521
Shen, B., Liu, W., & Yin, L. (2018). Drag and heat reduction efficiency research on opposing jet in supersonic flows.
Aerospace Science and Technology,
77, 696-703.
https://doi.org/10.1016/j.ast.2018.03.051
Silton, S. I., & Goldstein, D. B. (2005). Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow.
Journal of Fluid Mechanics,
528, 297-321.
https://doi.org/10.1017/S0022112004002460
Stalder, J. R., & Nielsen, H. V. (1954). Heat transfer from a hemisphere-cylinder equipped with flow-separation spikes. NACA-TN-3287
Sundarraj, V., Sundarraj, K., & Kulkarni, P. S. (2021). Thermo-fluid analysis of supersonic flow over ballistic shaped bodies with multiple aero-disk spike configurations.
Acta Astronautica,
180, 292-304.
https://doi.org/10.1016/j.actaastro.2020.12.022
Tahani, M., Karimi, M., Motlagh, A. M., & Mirmahdian, S. (2013). Numerical investigation of drag and heat reduction in hypersonic spiked blunt bodies.
Heat and Mass Transfer,
49(10), 1369-1384.
https://doi.org/10.1007/s00231-013-1173-4
Tembhurnikar, P. V., Jadhav, A. T., & Sahoo, D. (2020). Effect of intermediate aerodisk mounted sharp tip spike on the drag reduction over a hemispherical body at Mach 2.0.
FME Transactions,
48(4), 779-786.
https://doi.org/10.5937/fme2004779T
Vali, S. E., & Abbasi, S. (2022). Hypersonic drag and heat reduction mechanism of a new hybrid method of spike, multi-row discs and opposing jets aerodynamic configuration.
International Journal of Heat and Mass Transfer,
194, 123034.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123034
Wang, Z., & Zhang, X. (2022). Parametric research on drag reduction and thermal protection of blunt-body with opposing jets of forward convergent nozzle in supersonic flows.
Acta Astronautica,
190, 218-230.
https://doi.org/10.1016/j.actaastro.2021.10.021
Xie, W., Luo, Z., Hou, L., Zhou, Y., Liu, Q., & Peng, W. (2021). Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow.
Physics of Fluids,
33(9), 096104.
https://doi.org/10.1063/5.0064533
Yadav, R., Bodavula, A., & Joshi, S. (2018). Numerical investigation of the effect of disk position on the aerodynamic heating and drag of a spiked blunt body in hypersonic flow.
The Aeronautical Journal,
122(1258), 1916-1942.
https://doi.org/10.1017/aer.2018.109
Yamauchi, M., Fujii, K., & Higashino, F. (1995). Numerical investigation of supersonic flows around a spiked blunt body.
Journal of Spacecraft and Rockets,
32(1), 32-42.
https://doi.org/10.2514/3.26571
Zhang, J., Ma, H., & Qin, Y. (2017).
Experimental investigation on flow characteristic of combination of forward-facing jet and spike. 21st AIAA International Space Planes and Hypersonics Technologies Conference.
https://doi.org/10.2514/6.2017-2402
Zhang, W., Wang, X., Zhang, Z., Han, F., & Zhao, S. (2022). Heat and drag reduction of single and combined opposing jets in hypersonic nonequilibrium flows.
Aerospace Science and Technology,
121, 107194.
https://doi.org/10.1016/j.ast.2021.107194
Zhong, K., Yan, C., Chen, S. S., Zhang, T. X., & Lou, S. (2019). Aerodisk effects on drag reduction for hypersonic blunt body with an ellipsoid nose.
Aerospace Science and Technology,
86, 599-612.
https://doi.org/10.1016/j.ast.2019.01.027
Zhu, L., Chen, X., Li, Y., Musa, O., & Zhou, C. (2018). Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach.
Acta Astronautica,
142, 300-313.
https://doi.org/10.1016/j.actaastro.2017.11.001
Zhu, L., Li, Y., Chen, X., Gong, L., Xu, J., & Feng, Z. (2019). Novel combinational aerodisk and lateral jet concept for drag and heat reduction in hypersonic flows.
Journal of Aerospace Engineering,
32(1), 04018133.
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000966
Zhu, L., Tian, X., Li, W., Yan, M., Tang, X., & Huang, M. (2021). Nonablative dual-jet strategy for drag and heat reduction of hypersonic blunt vehicles.
Journal of Aerospace Engineering,
34(5), 04021052.
https://doi.org/10.1061/(ASCE)AS.1943-5525.0001290