Chang, S. W., & Shen H. D. (2020). Heat transfer characteristics of swirling impinging jet-arrays issued from nozzle plates with and without webbed grooves.
International Journal of Thermal Sciences,
148, 106155.
https://doi.org/10.1016/j.ijthermalsc-i.2019.106155
Chen, L. L., Brakmann, R. G. A., Weigand, B., Crawford, M., & Poser, R. (2019). Detailed heat transfer investigation of an impingement jet array with large jet-to-jet distance.
International Journal of Thermal Sciences,
146, 106058.
https://doi.org/10.1016/j.ijthermalsci.2019.106058
Choo, K., Friedrich, B. K., Glaspell, A. W., & Schilling, K. A. (2016). The influence of nozzle-to-plate spacing on heat transfer and fluid flow of submerged jet impingement.
International Journal of Heat and Mass Transfer,
97, 66–69.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.060
Geers, L. F. G., Hanjalic, K., & Tummers, M. J. (2005). Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays.
Journal of Fluid Mechanics,
546, 255–284.
https://d-oi.org/10.1017/S002211200500710X
Huang, H., Sun, T., Zhang, G., Li, D., & Wei, H. (2019). Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer.
International Journal of Heat and Mass Transfer,
139, 700–712.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.058
Ismael, M. A., Younes, O., Fteiti, M., Ghalambaz, M., & Homod, R. Z. (2023). Impingement jets on a confined assembly of rotating hot cylinder covered by a surface porous layer.
Applied Thermal Engineering,
229, 120470.
https://doi.org/10.1016/j.applthermaleng.2023.120470
Kalifa, R. B., Habli, S., Saïd, N. M., Bournot, H., & Palec G. L. (2016). Parametric analysis of a round jet impingement on a heated plate.
International Journal of Heat and Fluid Flow,
57, 11–23.
https://doi.org/10.1016/j.ijheatfluidflow.2015.11.005
Lyu, Y. W., Zhang, J. Z., Liu, X. C., & Shan, Y. (2019). Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures.
Chinese Journal of Aeronautics,
32, 2275–2285.
https://doi.org/10.1016/j.cja.2019.07.002
Nagesha, K., Srinivasan, K., & Sundararajan, T. (2019). Enhancement of jet impingement heat transfer using surface roughness elements at different heat inputs.
Experimental Thermal and Fluid Science,
112, 109995.
https://doi.org/10.1016/j.expthermflus-ci.2019.109995
Pachpute, S., & Premachandran, B. (2018). Effect of the shape of flow confinement on turbulent slot jet impingement cooling of a heated circular cylinder.
International Journal of Thermal Sciences,
131, 114–131.
https://doi.org/10.1016/j.ijthermalsci.2018.05.026
Qiu, T., Song, X., Lei, Y., Dai, H. F., Cao, C. L., Xu, H., & Feng, X. (2016). Effect of backpressure on nozzle inner flow in fuel injector.
Fuel,
173, 79–89.
https://doi.org/10.1016/j.fuel.2016.01.044
Qiu, T., Wang, K. X., Lei, Y., Wu, C. L., Liu, Y. W., Chen, X. Y., & Guo, P. (2018). Investigation on effects of backpressure on submerged jet flow from short cylindrical orifice filled with diesel fuel.
Energy,
162, 964–976.
https://doi.org/10.1016/j.energy.2018.08.012
Sexton, A., Punch, J., Stafford, J., & Jeffers, N. (2018). The thermal and hydrodynamic behaviour of confined, normally impinging laminar slot jets.
International Journal of Heat and Mass Transfer,
123, 40–53.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.083
Tang, Z. G., Deng, F., Wang, S. C., & Cheng, J. P. (2021). Numerical simulation of flow and heat transfer characteristics of a liquid jet impinging on a cylindrical cavity heat sink.
Journal of Applied Fluid Mechanics,
14, 723–732.
https://doi.org/10.47176/jafm.14.03.31945
Terzis, A. (2016). On the correspondence between flow structures and convective heat transfer augmentation for multiple jet impingement.
Experiments in Fluids,
57, 1–14.
https://doi.org/10.1007/s00348-016-2232-7
Thani, M. A., & Ismael, M. A. (2022). Numerical study of jet impingement on heated sink covered by a porous layer.
Basrah Journal for Engineering Sciences,
22, 1–9.
https://doi.org/10.33971/bjes.22.2.1
Yeom, T., Huang, L. Z., Zhang, M., Simon, T., & Cui, T. H. (2019). Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array.
International Journal of Heat and Mass Transfer,
143, 118484.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118484
Yu, J., Peng, L., Bu, X. Q., Shen, X. B., Lin, G. P., & Bai, L. Z. (2018). Experimental investigation and correlation development of jet impingement heat transfer with two rows of aligned jet holes on an internal surface of a wing leading edge.
Chinese Journal of Aeronautics,
31, 1962–1972.
https://doi.org/10.1016/j.cja.2018.07.016
Yu, P. P., Zhu, K. Q., Shi, Q., Yuan, N. Y., & Ding, J. N. (2017). Transient heat transfer characteristics of small jet impingement on high-temperature flat plate.
International Journal of Heat and Mass Transfer,
114, 981–991.
https://doi.org/10.1016/j/ijheatmasstransfer.2017.06.112
Zhang, Y. Y., Li, P., & Xie, Y. H. (2018). Numerical investigation of heat transfer characteristics of impinging synthetic jets with different waveforms.
International Journal of Heat and Mass Transfer,
125, 1017–1027.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.120
Zhao, Y. L., Zhou, Y. Y., & Zhao, Y. X. (2022). Experimental study of the unstart/restart process of a two-dimensional supersonic inlet induced by backpressure.
Journal of Applied Fluid Mechanics,
15, 415–426.
https://doi.org/10.47176/jafm.15.02.33220