Ahmed, R. I., Abu Talib, A. R., Rafie, A. S. M., & Djojodihardjo, H. (2017). Aerodynamics and flight mechanics of mav based on coanda effect.
Aerospace Science and Technology,
62, 136-147.
https://doi.org/10.1016/j.ast.2016.11.023
Al-Obaidi, A. R. (2019). Investigation of effect of pump rotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis.
Heliyon,
5(6), e01910.
https://doi.org/10.1016/j.heliyon.2019.e01910
Al-Obaidi, A. R. (2023a). Effect of different guide vane configurations on flow field investigation and performances of an axial pump based on cfd analysis and vibration investigation.
Experimental Techniques, 1-20.
https://doi.org/10.1007/s40799-023-00641-5
Al-Obaidi, A. R. (2023b). Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method.
Archives of Acoustics,
48(2), 159-170.
https://doi.org/10.24425/aoa.2023.145234
Al-Obaidi, A. R., & Alhamid, J. (2023). Investigation of the main flow characteristics mechanism and flow dynamics within an axial flow pump based on different transient load conditions.
Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 1-19.
https://doi.org/10.1007/s40997-022-00586-x
Al-Obaidi, A. R., & Qubian, A. (2022). Effect of outlet impeller diameter on performance prediction of centrifugal pump under single-phase and cavitation flow conditions.
International Journal of Nonlinear Sciences and Numerical Simulation,
23(7-8), 1203-1229.
https://doi.org/10.1515/ijnsns-2020-0119
Astolfi, J. A., Dorange, P., & Tomas, I. C. (2000). An experimental investigation of cavitation inception and development on a two-dimensional eppler hydrofoil.
Journal of Fluids Engineering-Transactions of the ASME,
122(1), 164-174.
https://doi.org/10.1115/1.483239
Bachert, R., Stoffel, B., & Dular, M. (2010). Unsteady cavitation at the tongue of the volute of a centrifugal pump.
Journal of Fluids Engineering-Transactions of the Asme,
132(6), 061301.
https://doi.org/10.1115/1.4001570
Bakir, F., Rey, R., Gerber, A. G., Belamri, T., & Hutchinson, B. (2004). Numerical and experimental investigations of the cavitating behavior of an inducer.
International Journal of Rotating Machinery,
10, 690740.
https://doi.org/10.1155/S1023621X04000028
Dular, M., & Bachert, R. (2009). The issue of strouhal number definition in cavitating flow. Strojniski Vestnik-Journal of Mechanical Engineering, 55(11), 666-674.
Dular, M., Bachert, R., Stoffel, B., & Sirok, B. (2005). Experimental evaluation of numerical simulation of cavitating flow around hydrofoil.
European Journal of Mechanics B-Fluids,
24(4), 522-538.
https://doi.org/10.1016/j.euromechflu.2004.10.004
Foeth, E. J., Van Doorne, C. W. H., Van Terwisga, T., & Wieneke, B. (2006). Time resolved piv and flow visualization of 3d sheet cavitation.
Experiments in Fluids,
40(4), 503-513.
https://doi.org/10.1007/s00348-005-0082-9
Foeth, E. J., Van Terwisga, T., & Van Doorne, C. (2008). On the collapse structure of an attached cavity on a three-dimensional hydrofoil.
Journal of Fluids Engineering-Transactions of the Asme,
130(7), 071303.
https://doi.org/10.1115/1.2928345
Folden, T. S., & Aschmoneit, F. J. (2023). A classification and review of cavitation models with an emphasis on physical aspects of cavitation.
Physics of Fluids,
35(8), 081301.
https://doi.org/10.1063/5.0157926
Hu, Q. X., Yang, Y., Shi, W. D., Cao, W. D., & Shi, Y. S. (2021). Cavitating flow in the volute of a centrifugal pump at flow rates above the optimal condition.
Journal of Marine Science and Engineering,
9(4), 446.
https://doi.org/10.3390/jmse9040446
Hu, Q., Yang, Y., & Cao, W. (2020). Computational analysis of cavitation at the tongue of the volute of a centrifugal pump at overload conditions.
Advances in Production Engineering & Management,
15(3), 295-306.
https://doi.org/10.14743/apem2020.3.366
Ji, B., Luo, X. W., Wu, Y. L., Peng, X. X., & Duan, Y. L. (2013). Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil.
International Journal of Multiphase Flow,
51, 33-43.
https://doi.org/10.1016/j.ijmultiphaseflow.2012.11.008
Jiang, J., Li, Y. H., Pei, C. Y., Li, L. L., Fu, Y., Cheng, H. G., & Sun, Q. Q. (2019). Cavitation performance of high-speed centrifugal pump with annular jet and inducer at different temperatures and void fractions.
Journal of Hydrodynamics,
31(1), 93-101.
https://doi.org/10.1007/s42241-019-0011-7
Ju, D. M., Xiang, C. L., Wang, Z. Y., Li, J., & Xiao, N. X. (2018). Flow structures and hydrodynamics of unsteady cavitating flows around hydro-foil at various angles of attack.
Journal of Hydrodynamics,
30(2), 276-286.
https://doi.org/10.1007/s42241-018-0033-6
Kravtsova, A. Y., Markovich, D. M., Pervunin, K. S., Timoshevskiy, M. V., & Hanjalic, K. (2014). High-speed visualization and piv measurements of cavitating flows around a semi-circular leading-edge flat plate and naca0015 hydrofoil.
International Journal of Multiphase Flow,
60, 119-134.
https://doi.org/10.1016/j.ijmultiphaseflow.2013.12.004
Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289.
Limbach, P., & Skoda, R. (2017). Numerical and experimental analysis of cavitating flow in a low specific speed centrifugal pump with different surface roughness.
Journal of Fluids Engineering-Transactions of the Asme,
139(10), 101201.
https://doi.org/10.1115/1.4036673
Liu, M., Tan, L., & Cao, S. L. (2019). Cavitation-vortex-turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ale15 by large eddy simulation.
Journal of Fluids Engineering-Transactions of the Asme,
141(2), 021103.
https://doi.org/10.1115/1.4040502
Liu, Y. W. (2021). Study on the influent of non-uniform inflow on performance of centrifugal pump and optimization. [Master's thesis, Xian University of Technology]. Xian, China. [in Chinese].
Lu, J. X. (2017). Investigation on the unsteady dynamic characteristics and its mechanism induced by cavitation in a centrifugal pump. [PhD. thesis, Jiangsu University]. Zhenjiang, China. [in Chinese].
Lu, J. X., Gong, Y., Li, L. H., Liu, X. B., Kan, N. Q., & Zhang, F. (2023). Research of the vibration induced by cavitation in a centrifugal pump under part load condition.
Physics of Fluids,
35(4), 045144.
https://doi.org/10.1063/5.0150364
Lu, J. X., Liu, X. B., Zeng, Y. Z., Zhu, B. S., Hu, B., & Hua, H. (2020). Investigation of the noise induced by unstable flow in a centrifugal pump.
Energies,
13(3), 589.
https://doi.org/10.3390/en13030589
Lu, J. X., Liu, X. B., Zeng, Y. Z., Zhu, B. S., Hu, B., Yuan, S. Q., & Hua, H. (2019). Detection of the flow state for a centrifugal pump based on vibration.
Energies,
12(16), 3066.
https://doi.org/10.3390/en12163066
Lu, J. X., Luo, Z. Y., Chen, Q., Liu, X. B., & Zhu, B. S. (2022). Study on pressure pulsation induced by cavitation at the tongue of the volute in a centrifugal pump.
Arabian Journal for Science and Engineering,
47(12), 16033-16048.
https://doi.org/10.1007/s13369-022-06829-y
Mandhare, N. A., Karunamurthy, K., & Ismail, S. (2019). Compendious review on "Internal flow physics and minimization of flow instabilities through design modifications in a centrifugal pump".
Journal of Pressure Vessel Technology-Transactions of the Asme,
141(5), 051601.
https://doi.org/10.1115/1.4043383
Pham, T. M., Larrarte, F., & Fruman, D. H. (1999). Investigation of unsteady sheet cavitation and cloud cavitation mechanisms.
Journal of Fluids Engineering-Transactions of the ASME,
121(2), 289-296.
https://doi.org/10.1115/1.2822206
Rakibuzzaman, M., Kim, K., & Suh, S. H. (2018). Numerical and experimental investigation of cavitation flows in a multistage centrifugal pump.
Journal of Mechanical Science and Technology,
32(3), 1071-1078.
https://doi.org/10.1007/s12206-018-0209-6
Shi, W. C., Atlar, M., Rosli, R., Aktas, B., & Norman, R. (2016). Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs.
Ocean Engineering,
121, 143-155.
https://doi.org/10.1016/j.oceaneng.2016.05.030
Si, Q. R., Yuan, S. Q., Li, X. J., Yuan, J. P., & Lu, J. X. (2014). Numerical simulation of unsteady cavitation flow in the casing of a centrifugal pump.
Transactions of the Chinese Society for Agricultural Machinery,
45(05), 84-90. [in Chinese].
https://doi.org/10.6041/j.issn.1000-1298.2014.05.013
Sun, W. H. (2020). Research on the transient characteristics of startup process and cavitation under partial load in a centrifugal pump. [Master's thesis, Shandong University of Science and Technology]. Qingdao, China. [in Chinese].
Tan, L., Zhu, B. S., Cao, S. L., Wang, Y. C., & Wang, B. B. (2014). Influence of prewhirl regulation by inlet guide vanes on cavitation performance of a centrifugal pump.
Energies,
7(2), 1050-1065.
https://doi.org/10.3390/en7021050
Xue, M. X. (2012). Investigation on cavitation mechanism and suppression method close to an afterburning fuel pump casing tongue. [PhD. thesis, Tsinghua University]. Beijing, China. [in Chinese].
Yuan, J. P., Hou, J. S., Fu, Y. X., Hu, J. W., Zhang, H. Y., & Shen. C. D. (2018). A study on the unsteady characteristics of the backflow votex cavitation in a centrifugal pump.
Journal of Vibration and Shock,
37(16), 24-30. [in Chinese].
https://doi.org/10.13465/j.cnki.jvs.2018.16.004
Zhao, Y., Wang, G. Y., & Huang, B. (2014). Vortex dynamic analysis of unsteady cavitating flows around a hydrofoil.
Journal of Drainage and Irrigation Machinery Engineering,
32(08), 645-651. [in Chinese].
https://doi.org/10.3969/j.issn.1674-8530.13.1020
Zhou, H. L., Cao, G. Y., Chen, X., Zhang, Y. Q., & Cang, Y. G. (2023). A study on the thermal properties of oil-film viscosity in squeeze film dampers.
Lubricants,
11(4), 163.
https://doi.org/10.3390/lubricants11040163
Zhu, X. Y., Lai, F., Xie, C. C., Li, G. J., & Romuald, S. (2020). Experimental and numerical studies on the rotor-stator interaction of a centrifugal pump.
Journal of Harbin Engineering University,
41(08), 1176-1183. [in Chinese].
https://doi.org/10.11990/jheu.201904005