Impact of Magnetic Fields and Fins on Entropy Generation, Thermal, and Hydrodynamic Performance in the Ferrofluids Flow within a Mini Channel

Document Type : Regular Article

Authors

1 Faculty of Sciences of Tunis, Department of Physics, Laboratory of Energizing and Thermal and Mass Transfer, University of Tunis El-Manar, Tunis, Tunisia

2 Department of Physics, Preparatory Institute of the Engineers Studies of El-Manar, University of Tunis El-Manar, Tunis, Tunisia

Abstract

The present work reports a CFD study of the magneto-convection of a ferrofluid (Fe3O4/water) circulating in a mini-channel under the influence of different vortex generators (fins and permanent magnets). The lower surface of the mini-channel is maintained at a constant temperature, while the upper surface is thermally insulated. The influence of fins, magnetic field intensity, and Reynolds number on the thermal and dynamic characteristics of the flow was numerically investigated using the finite volume method. The obtained results show that the coexistence of these two types of vortex generators considerably affects the flow structure; Entropy generation and heat transfer rate. Finally, the analysis of the different results shows that the concurrent presence of both the magnetic field and the fins results in a notably more efficient system. Using magnetic sources and fins simultaneously in a system with an intense magnetic field and a low Reynolds number can lead to a large gain in heat transfer.

Keywords

Main Subjects


Akbari, O. A., Toghraie, D., & Karimipour, A. (2015). Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Advances in Mechanical Engineering7(11), 1687814015618155. https://doi.org/ 10.1177/1687814015618155
Amani, M., Ameri, M., & Kasaeian, A. (2018). Hydrothermal assessment of ferrofluids in a metal foam tube under low-frequency magnetic field. International Journal of Thermal Sciences127, 242-251. https://doi.org/10.1016/j.ijthermalsci.2018.01. 031
Aminfar, H., Mohammadpourfard, M., & Zonouzi, S. A. (2013). Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. Journal of Magnetism and Magnetic materials327, 31-42. https://doi.org/10.1016/j.jmmm.2012. 09.011
ANSYS Fluent Tutorial Guide, R1, ANSYS, Inc, Canonsburg, PA, January 2019.
Azizian, R., Doroodchi, E., McKrell, T., Buongiorno, J., Hu, L. W., & Moghtaderi, B. (2014). Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. International Journal of Heat and Mass Transfer68, 94-109. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.011
Bezaatpour, M., & Goharkhah, M. (2019a). A novel heat sink design for simultaneous heat transfer enhancement and pressure drop reduction utilizing porous fins and magnetite ferrofluid. International Journal of Numerical Methods for Heat & Fluid Flow29(9), 3128-3147. https://doi.org/10.1108/HFF-12-2018-0810
Bezaatpour, M., & Goharkhah, M. (2019b). Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink. Journal of Magnetism and Magnetic Materials476, 506-515. https://doi.org/10.1016/ j.jmmm.2019.01.028
Bezaatpour, M., & Goharkhah, M. (2020). A magnetic vortex generator for simultaneous heat transfer enhancement and pressure drop reduction in a mini channel. Heat Transfer49(3), 1192-1213. https://doi.org/10.1002/htj.21658
Ganguly, R., Sen, S., & Puri, I. K. (2004a). Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. Journal of Magnetism and Magnetic Materials271(1), 63-73. https://doi.org/ 10.1016/j.jmmm.2003.09.015
Ganguly, R., Sen, S., & Puri, I. K. (2004b). Thermomagnetic convection in a square enclosure using a line dipole. Physics of Fluids16(7), 2228-2236. https://doi.org/10.1063/1.1736691
Ghale, Z. Y., Haghshenasfard, M., & Esfahany, M. N. (2015). Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. International Communications in Heat and Mass Transfer68, 122-129. https://doi.org/10.1016/ j.icheatmasstransfer.2015.08.012
Ghofrani, A., Dibaei, M. H., Sima, A. H., & Shafii, M. B. (2013). Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field. Experimental Thermal and Fluid Science49, 193-200. https://doi.org/10.1016/j.expthermflusci.2013. 04.018
Gupta, M., & Kasana, K. S. (2012). Numerical study of heat transfer enhancement and fluid flow with inline common‐flow‐down vortex generators in a plate‐fin heat exchanger. Heat Transfer—Asian Research41(3), 272-288. https://doi.org/10.1002/htj.20414
Hamid, K. A., Azmi, W. H., Nabil, M. F., & Mamat, R. (2018). Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow. International Journal of Heat and Mass Transfer118, 617-627. https://doi.org/10.1016/j. ijheatmasstransfer.2017.11.036
Hussain, S., Mehmood, K., & Sagheer, M. (2016). MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating. Journal of Magnetism and Magnetic Materials419, 140-155. https://doi.org/ 10.1016/j.jmmm.2016.06.006
Ibrahim, M., Saeed, T., Bani, F. R., Sedeh, S. N., Chu, Y. M., & Toghraie, D. (2021). Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field. Powder Technology384, 522-541. https://doi.org/10.1016/j.powtec.2021.01.077
Karimipour, A., Alipour, H., Akbari, O. A., Semiromi, D. T., & Esfe, M. H. (2015). Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nanofluid with varying volume fraction in a rectangular Two-Dimensional microchannel. Indian Journal of Science and Technology, 8, 51707. http://dx.doi.org/ 10.17485/ijst/2015/v8i15/51707
Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research6, 577-588. http:// dx.doi.org/10.1007/s11051-004-3170-5
Lajvardi, M., Moghimi-Rad, J., Hadi, I., Gavili, A., Isfahani, T. D., Zabihi, F., & Sabbaghzadeh, J. (2010). Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. Journal of Magnetism and Magnetic Materials322(21), 3508-3513. https://doi.org/10.1016/j.jmmm.2010.06.054
Manca, O., Nardini, S., & Ricci, D. (2012). Numerical study of nanofluid forced convection in ribbed channels. Applied Thermal Engineering, 37, 280-292. http://dx.doi.org/10.1016/j.applthermaleng. 2011.11.030
Mechighel, F., El Ganaoui, M., Kadja, M., Pateyron, B., & Dost, S. (2009). Numerical simulation of three dimensional low Prandtl liquid flow in a parallelepiped cavity under an external magnetic field. FDMP: Fluid Dynamics & Materials Processing5(4), 313-330. https://doi.org/10.3970/fdmp.2009.005.313
Motozawa, M., Chang, J., Sawada, T., & Kawaguchi, Y. (2010). Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid. Physics Procedia9, 190-193. http://dx.doi.org/10.1016/j. phpro.2010.11.043
Mousavi, S. M., Biglarian, M., Darzi, A. A. R., Farhadi, M., Afrouzi, H. H., & Toghraie, D. (2019). Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field. Journal of Thermal Analysis and Calorimetry139, 3331-3343. https://doi.org/10. 1007/s10973-019-08650-6
Nguyen, Q., Sedeh, S. N., Toghraie, D., Kalbasi, R., & Karimipour, A. (2020). Numerical simulation of the ferro-nanofluid flow in a porous ribbed microchannel heat sink: investigation of the first and second laws of thermodynamics with single-phase and two-phase approaches. Journal of the Brazilian Society of Mechanical Sciences and Engineering42, 1-14. http://dx.doi.org/10.1007/s40430-020-02534-9
Pishkar, I., & Ghasemi, B. (2012). Cooling enhancement of two fins in a horizontal channel by nanofluid mixed convection. International Journal of Thermal Sciences59, 141-151. https://doi.org/10.1016/j. ijthermalsci.2012.04.015
Ragoju, R., & Shekhar, S. (2020). Linear and weakly nonlinear analyses of magneto-convection in a sparsely packed porous medium under gravity modulation. Journal of Applied Fluid Mechanics, 13(6), 1937-1947. 10.47176/jafm.13.06.31560
Sachdeva, G., Kasana, K. S., & Vasudevan, R. (2010). Heat transfer enhancement by using a rectangular wing vortex generator on the triangular shaped fins of a plate‐fin heat exchanger. Heat TransferAsian Research: Cosponsored by the Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME, 39(3), 151-165. https://doi.org/10.1002/htj.20285
Sadeghinezhad, E., Mehrali, M., & Akhiani, A. R. (2017). Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field. Applied Thermal Engineering, 114, 415‐427. https://doi.org/10.1016/j.applthermaleng. 2016.11.199
Scherer, C., & Figueiredo Neto, A. M. (2005). Ferrofluids: properties and applications. Brazilian journal of physics35, 718-727. https://doi.org/10.1590/S0103-97332005000400018
Sheikholeslami, M., & Ganji, D. D. (2017). Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source. Journal of Molecular Liquids229, 530-540. https://doi.org/10.1016/j.molliq.2016.12.101
Sheikholeslami, M., & Ganji, D. D. (2018). Ferrofluid convective heat transfer under the influence of external magnetic source. Alexandria engineering journal57(1), 49-60. https://doi.org/10.1016/j.aej.2016.11.007
Sheikholeslami, M., Arabkoohsar, A., Khan, I., Shafee, A., & Li, Z. (2019). Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. Journal of Cleaner Production221, 885-898. https://doi.org/10.1016/j.jclepro.2019.02.075
Sheikholeslami, M., Ellahi, R., & Vafai, K. (2018). Study of Fe3O4-water nanofluid with convective heat transfer in the presence of magnetic source. Alexandria Engineering Journal57(2), 565-575. https://doi. org/10.1016/j.aej.2017.01.027
Szabo, P. S., & Früh, W. G. (2017). The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field. Journal of Magnetism and Magnetic Materials447, 116-123. http://dx.doi.org/10.1016/ j.jmmm.2017.09.028
Tari, I., & Mehrtash, M. (2013). Natural convection heat transfer from inclined plate-fin heat sinks. International Journal of Heat and Mass Transfer56(1-2), 574-593. http://dx.doi.org/10.1016/j.ijheatmass transfer. 2012.08.050.
Wang, C. C. (2005). Mixed convection boundary layer flow on inclined wavy plates including the magnetic field effect. International Journal of Thermal Sciences44(6), 577-586. https://doi.org/10.1016/j.ijthermalsci.2005.02.001
Xuan, Y., Li, Q., & Ye, M. (2007). Investigations of convective heat transfer in ferrofluid microflows using lattice-Boltzmann approach. International Journal of Thermal Sciences46(2), 105-111. https://doi.org/10.1016/j.ijthermalsci.2006.04.002