Akbari, O. A., Toghraie, D., & Karimipour, A. (2015). Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel.
Advances in Mechanical Engineering,
7(11), 1687814015618155.
https://doi.org/ 10.1177/1687814015618155
Aminfar, H., Mohammadpourfard, M., & Zonouzi, S. A. (2013). Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field.
Journal of Magnetism and Magnetic materials,
327, 31-42.
https://doi.org/10.1016/j.jmmm.2012. 09.011
ANSYS Fluent Tutorial Guide, R1, ANSYS, Inc, Canonsburg, PA, January 2019.
Azizian, R., Doroodchi, E., McKrell, T., Buongiorno, J., Hu, L. W., & Moghtaderi, B. (2014). Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids.
International Journal of Heat and Mass Transfer,
68, 94-109.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.011
Bezaatpour, M., & Goharkhah, M. (2019a). A novel heat sink design for simultaneous heat transfer enhancement and pressure drop reduction utilizing porous fins and magnetite ferrofluid.
International Journal of Numerical Methods for Heat & Fluid Flow,
29(9), 3128-3147.
https://doi.org/10.1108/HFF-12-2018-0810
Bezaatpour, M., & Goharkhah, M. (2019b). Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink.
Journal of Magnetism and Magnetic Materials,
476, 506-515.
https://doi.org/10.1016/ j.jmmm.2019.01.028
Bezaatpour, M., & Goharkhah, M. (2020). A magnetic vortex generator for simultaneous heat transfer enhancement and pressure drop reduction in a mini channel.
Heat Transfer,
49(3), 1192-1213.
https://doi.org/10.1002/htj.21658
Ganguly, R., Sen, S., & Puri, I. K. (2004a). Heat transfer augmentation using a magnetic fluid under the influence of a line dipole.
Journal of Magnetism and Magnetic Materials,
271(1), 63-73.
https://doi.org/ 10.1016/j.jmmm.2003.09.015
Ganguly, R., Sen, S., & Puri, I. K. (2004b). Thermomagnetic convection in a square enclosure using a line dipole.
Physics of Fluids,
16(7), 2228-2236.
https://doi.org/10.1063/1.1736691
Ghale, Z. Y., Haghshenasfard, M., & Esfahany, M. N. (2015). Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models.
International Communications in Heat and Mass Transfer,
68, 122-129.
https://doi.org/10.1016/ j.icheatmasstransfer.2015.08.012
Ghofrani, A., Dibaei, M. H., Sima, A. H., & Shafii, M. B. (2013). Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field.
Experimental Thermal and Fluid Science,
49, 193-200.
https://doi.org/10.1016/j.expthermflusci.2013. 04.018
Gupta, M., & Kasana, K. S. (2012). Numerical study of heat transfer enhancement and fluid flow with inline common‐flow‐down vortex generators in a plate‐fin heat exchanger.
Heat Transfer—Asian Research,
41(3), 272-288.
https://doi.org/10.1002/htj.20414
Hamid, K. A., Azmi, W. H., Nabil, M. F., & Mamat, R. (2018). Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow.
International Journal of Heat and Mass Transfer,
118, 617-627.
https://doi.org/10.1016/j. ijheatmasstransfer.2017.11.036
Hussain, S., Mehmood, K., & Sagheer, M. (2016). MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating.
Journal of Magnetism and Magnetic Materials,
419, 140-155.
https://doi.org/ 10.1016/j.jmmm.2016.06.006
Ibrahim, M., Saeed, T., Bani, F. R., Sedeh, S. N., Chu, Y. M., & Toghraie, D. (2021). Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field.
Powder Technology,
384, 522-541.
https://doi.org/10.1016/j.powtec.2021.01.077
Karimipour, A., Alipour, H., Akbari, O. A., Semiromi, D. T., & Esfe, M. H. (2015). Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nanofluid with varying volume fraction in a rectangular Two-Dimensional microchannel.
Indian Journal of Science and Technology, 8, 51707.
http://dx.doi.org/ 10.17485/ijst/2015/v8i15/51707
Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6, 577-588. http:// dx.doi.org/10.1007/s11051-004-3170-5
Lajvardi, M., Moghimi-Rad, J., Hadi, I., Gavili, A., Isfahani, T. D., Zabihi, F., & Sabbaghzadeh, J. (2010). Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect.
Journal of Magnetism and Magnetic Materials,
322(21), 3508-3513.
https://doi.org/10.1016/j.jmmm.2010.06.054
Mechighel, F., El Ganaoui, M., Kadja, M., Pateyron, B., & Dost, S. (2009). Numerical simulation of three dimensional low Prandtl liquid flow in a parallelepiped cavity under an external magnetic field.
FDMP: Fluid Dynamics & Materials Processing,
5(4), 313-330.
https://doi.org/10.3970/fdmp.2009.005.313
Mousavi, S. M., Biglarian, M., Darzi, A. A. R., Farhadi, M., Afrouzi, H. H., & Toghraie, D. (2019). Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field.
Journal of Thermal Analysis and Calorimetry,
139, 3331-3343.
https://doi.org/10. 1007/s10973-019-08650-6
Nguyen, Q., Sedeh, S. N., Toghraie, D., Kalbasi, R., & Karimipour, A. (2020). Numerical simulation of the ferro-nanofluid flow in a porous ribbed microchannel heat sink: investigation of the first and second laws of thermodynamics with single-phase and two-phase approaches.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
42, 1-14.
http://dx.doi.org/10.1007/s40430-020-02534-9
Ragoju, R., & Shekhar, S. (2020). Linear and weakly nonlinear analyses of magneto-convection in a sparsely packed porous medium under gravity modulation.
Journal of Applied Fluid Mechanics,
13(6), 1937-1947.
10.47176/jafm.13.06.31560
Sachdeva, G., Kasana, K. S., & Vasudevan, R. (2010). Heat transfer enhancement by using a rectangular wing vortex generator on the triangular shaped fins of a plate‐fin heat exchanger.
Heat Transfer—Asian Research: Co‐sponsored by the Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME, 39(3), 151-165.
https://doi.org/10.1002/htj.20285
Sheikholeslami, M., & Ganji, D. D. (2017). Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source.
Journal of Molecular Liquids,
229, 530-540.
https://doi.org/10.1016/j.molliq.2016.12.101
Sheikholeslami, M., & Ganji, D. D. (2018). Ferrofluid convective heat transfer under the influence of external magnetic source.
Alexandria engineering journal,
57(1), 49-60.
https://doi.org/10.1016/j.aej.2016.11.007
Sheikholeslami, M., Arabkoohsar, A., Khan, I., Shafee, A., & Li, Z. (2019). Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus.
Journal of Cleaner Production,
221, 885-898.
https://doi.org/10.1016/j.jclepro.2019.02.075
Sheikholeslami, M., Ellahi, R., & Vafai, K. (2018). Study of Fe3O4-water nanofluid with convective heat transfer in the presence of magnetic source. Alexandria Engineering Journal, 57(2), 565-575. https://doi. org/10.1016/j.aej.2017.01.027
Szabo, P. S., & Früh, W. G. (2017). The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field.
Journal of Magnetism and Magnetic Materials,
447, 116-123.
http://dx.doi.org/10.1016/ j.jmmm.2017.09.028
Tari, I., & Mehrtash, M. (2013). Natural convection heat transfer from inclined plate-fin heat sinks.
International Journal of Heat and Mass Transfer,
56(1-2), 574-593.
http://dx.doi.org/10.1016/j.ijheatmass transfer. 2012.08.050.