Ani, E. C., Wallis, S., Kraslawski, A., & Agachi, P. S. (2009). Development, calibration and evaluation of two mathematical models for pollutant transport in a small river.
Environmental Modelling & Software,
24(10), 1139–1152.
https://doi.org/10.1016/j.envsoft.2009.03.008
Aris, R. (1956). On the dispersion of a solute in a fluid flowing through a tube.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
235(1200), 67–77.
https://doi.org/10.1016/S1874-5970(99)80009-5
Abidin, S. N. A. M. Z., Jaafar, N. A., & Ismail, Z. (2021). Herschel-Bulkley model of blood flow through a stenosed artery with the effect of chemical reaction on solute dispersion.
Malaysian Journal of Fundamental and Applied Sciences, 17(4), 457–474.
https://doi.org/10.11113/mjfas.v17n4.2144
Barati, P., & Saghafian, M. (2022). Optimum geometric bifurcation under pulsating flow assuming minimum energy consumption in cardiovascular system, an extension on murray’s law.
Journal of Applied Fluid Mechanics,
15(3), 687–695.
https://doi: 10.47176/jafm.15.03.33190
Bég, O. A., & Roy, A. K. (2022). Moment analysis of unsteady bi-component species (drug) transport with coupled chemical reaction in non-Newtonian blood flow.
Chinese Journal of Physics, 77, 1810–1826.
https://doi.org/10.1016/j.cjph.2022.04.003
Bel Hadj Taher, A., Kanfoudi, H., & Zgolli, R. (2022). numerical prediction approach of cavitation erosion based on 3D simulation flow.
Journal of Applied Fluid Mechanics,
15(4), 1165–1177.
https://doi: 10.47176/jafm.15.04.1016
Chatwin, P. C. (1970). The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe.
Journal of Fluid Mechanics, 43(2), 321–352.
https://doi.10.1017/S0022112070002409
Das, P., Sarifuddin, S., Rana, J., & Mandal, P. K. (2021). Solute dispersion in transient Casson fluid flow through stenotic tube with exchange between phases.
Physics of Fluids, 33(6).
https://doi.org/10.1063/5.0052770
Das, P., Sarifuddin, Rana, J., & Kumar Mandal, P. (2022). Unsteady solute dispersion in the presence of reversible and irreversible reactions.
Proceedings of the Royal Society A, 478(2264), 20220127.
https://doi.10.1098/rspa.2022.0127
Debnath, S., Saha, A. K., Siddheshwar, P. G., & Roy, A. K. (2019). On dispersion of a reactive solute in a pulsatile flow of a two-fluid model.
Journal of Applied Fluid Mechanics, 12(3), 987–1000.
https://doi.org/10.29252/jafm.12.03.29101
Debnath, S., Saha, A. K., Mazumder, B. S., & Roy, A. K. (2020). On transport of reactive solute in a pulsatile Casson fluid flow through an annulus.
International Journal of Computer Mathematics, 97(11), 2303-2319.
https://doi.org/10.1080/00207160.2019.1695047
Davidson, M. R., & Schroter, R. C. (1983). A theoretical model of absorption of gases by the bronchial wall.
Journal of Fluid Mechanics, 129, 313–335.
https://doi.10.1017/S0022112083000786
Dhand, C., Prabhakaran, M. P., Beuerman, R. W., Lakshminarayanan, R., Dwivedi, N., & Ramakrishna, S. (2014). Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery.
RSC advances, 4(62), 32673–32689.
https://doi.org/10.1039/C4RA02861A
Gill, W. N., & Sankarasubramanian, R. (1970). Exact analysis of unsteady convective diffusion.
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 316(1526), 341–350.
https://doi.org/10.1098/rspa.1970.0083
Giddings, J. C., & Eyring, H. (2002). A molecular dynamic theory of chromatography.
The Journal of Physical Chemistry, 59(5), 416–421.
https://doi.10.1021/J150527A009
Ibrahim, A., Meyrueix, R., Pouliquen, G., Chan, Y. P., & Cottet, H. (2013). Size and charge characterization of polymeric drug delivery systems by Taylor dispersion analysis and capillary electrophoresis.
Analytical and bioanalytical chemistry, 405, 5369–5379.
https://doi.10.1007/s00216-013-6972-4
Jiang, W., Zeng, L., Fu, X., & Wu, Z. (2022). Analytical solutions for reactive shear dispersion with boundary adsorption and desorption.
Journal of Fluid Mechanics, 947, A37.
https://doi.10.1017/jfm.2022.656.
Kori, J. (2020). Effect of first order chemical reactions on the dispersion coefficient associated with laminar flow through fibrosis affected lung.
Journal of biomechanics, 99, 109494.
https://doi.10.1016/j.jbiomech.2019.109494
Kori, J., & Pratibha. (2022). Effect of first order chemical reactions through tissue-blood interface on the partial pressure distribution of inhaled gas.
Computer Methods in Biomechanics and Biomedical Engineering, 25(1), 84–96.
https://doi.10.1080/10255842.2021.1932839
Lau, M. W., & Ng, C. O. (2009).
On the early development of dispersion in flow through a tube with wall reactions. In New Trends in Fluid Mechanics Research: Proceedings of the Fifth International Conference on Fluid Mechanics (Shanghai, 2007), Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-75995-9_224
Le, A. D., & Tran, H. T. (2022). Improvement of mass transfer rate modeling for prediction of cavitating flow.
Journal of Applied Fluid Mechanics,
15(2), 551-561.
https://doi: 10.47176/jafm.15.02.33231
Mazumder, B. S., & Das, S. K. (1992). Effect of boundary reaction on solute dispersion in pulsatile flow through a tube. Journal of Fluid Mechanics, 239, 523-549.
Mohseni, M., & Domfeh, M. K. (2023). Numerical analysis of transient vortex formation at the outlet of a tank containing gas-liquid phases.
Journal of Applied Fluid Mechanics,
16(11), 2235–2248.
https://doi: 10.47176/jafm.16.11.1942
Ng, C. O., & Rudraiah, N. (2008). Convective diffusion in steady flow through a tube with a retentive and absorptive wall.
Physics of Fluids, 20(7).
https://doi.10.1063/1.2958322
Paramanantham, S. S. S., Nagulapati, V. M., & Lim, H. (2022). Numerical investigation of the influence of microchannel geometry on the droplet generation process.
Journal of Applied Fluid Mechanics,
15(5), 1291–1305.
https://doi: 10.47176/jafm.15.05.1126
Rana, J., & Murthy, P. V. S. N. (2016). Solute dispersion in pulsatile Casson fluid flow in a tube with wall absorption.
Journal of Fluid Mechanics, 793, 877–914.
https://doi.10.1017/jfm.2016.155
Rana, J., & Murthy, P. V. S. N. (2017). Unsteady solute dispersion in small blood vessels using a two-phase Casson model.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2204), 20170427.
https://doi.10.1098/rspa.2017.0427
Shaw, S., Ganguly, S., Sibanda, P., & Chakraborty, S. (2014). Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a permeable microvessel.
Microvascular Research, 92, 25–33.
https://doi.10.1016/j.mvr.2013.12.007
Saini, A., Katiyar, V. K., & Pratibha. (2014). Effects of first-order chemical reactions on the dispersion coefficient associated with laminar flow through the lungs.
International Journal of Biomathematics, 7(02), 1450021.
https://doi.10.1142/S1793524514500211
Sankarasubramanian, R., & Gill, W. N. (1973). Unsteady convective diffusion with interphase mass transfer.
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 333(1592), 115–132.
https://doi.10.1098/rspa.1973.0051
Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 219(1137), 186–203.
https://doi.org/10.1098/rspa.1953.0139
Venditti, C., Giona, M., & Adrover, A. (2022). Exact moment analysis of transient/asymptotic dispersion properties in periodic media with adsorbing/desorbing walls.
Physics of Fluids, 34(12).
https://doi.10.1063/5.0130648
Wang, Y. F., & Huai, W. X. (2019). Random walk particle tracking simulation on scalar diffusion with irreversible first-order absorption boundaries.
Environmental Science and Pollution Research, 26, 33621–33630.
https://doi.org/10.1007/s11356-019-06422-1
Wu, Z., Zeng, L., Chen, G. Q., Li, Z., Shao, L., Wang, P., & Jiang, Z. (2012). Environmental dispersion in a tidal flow through a depth-dominated wetland.
Communications in Nonlinear Science and Numerical Simulation, 17(12), 5007–5025.
https://doi.org/10.1016/j.cnsns.2012.04.006
Wu, Z., & Chen, G. Q. (2014). Approach to transverse uniformity of concentration distribution of a solute in a solvent flowing along a straight pipe
. Journal of Fluid Mechanics, 740, 196–213.
https://doi.10.1017/jfm.2013.648
Wu, Z., Zhou, D., Li, S., Yang, J., Chen, G., & Li, X. (2022). Numerical Analysis of the Effect of Streamlined Nose Length on Slipstream of High-Speed Train Passing through a Tunnel.
Journal of Applied Fluid Mechanics,
15(6), 1933–1945.
https://doi.org/10.47176/jafm.15.06.1189
Yang, X., Hu, Y., Gong, Z., Jian, J., & Liu, Z. (2021). Numerical study of combined drag reduction bases on vortex generators and riblets for the ahmed body using IDDES methodology.
Journal of Applied Fluid Mechanics,
15(1), 193–207.
https://doi: 10.47176/jafm.15.01.32832
Zhang, D. X., Lu, Z. M., Liu, Y. L., & Chiu-On, N. G. (2009). Numerical simulation of the dispersion in oscillating flows with reversible and irreversible wall reactions.
Journal of Hydrodynamics, Ser. B, 21(4), 482-490.
https://doi.org/10.1016/S1001-6058(08)60174-2