Ahmed, S., Kamal, K., Ratlamwala, T. A. H., Mathavan, S., Hussain, G., Alkahtani, M., & Alsultan, M. B. M. (2022). Aerodynamic analyses of airfoils using machine learning as an alternative to RANS simulation.
Applied Sciences, 12(10), 5194.
https://www.mdpi.com/2076-3417/12/10/5194
Bekka, N., Bessaïh, R., Sellam, M., & Chpoun, A. (2009). Numerical study of heat transfer around the small scale airfoil using various turbulence models, numer.
Numerical Heat Transfer, Part A: Applications,
56, 946–969.
https://doi.org/https://doi.org/10.1080/10407780903508005
Bergman, T. L., Lavine, A. S., Incropera, F. P., & DeWitt, D. P. (2011). Introduction to heat transfer. John Wiley & Sons.
Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., & Kaushik, S. (2019). Prediction of aerodynamic flow fields using convolutional neural networks.
Computational Mechanics,
64(2), 525-545.
https://doi.org/10.1007/s00466-019-01740-0
Burns, T., & Muller, T. (1982).
Experimental studies of the eppler 61 airfoil at low reynolds numbers. 20th Aerospace Sciences Meeting.
https://doi.org/10.2514/6.1982-345
Eucken, A. (1940). Allgemeine gesetzmäßigkeiten für das wärmeleitvermögen verschiedener stoffarten und aggregatzustände.
Forschung auf dem Gebiet des Ingenieurwesens A,
11(1), 6-20.
https://doi.org/10.1007/BF02584103
Fahland, G., Stroh, A., Frohnapfel, B., Atzori, M., Vinuesa, R., Schlatter, P., & Gatti, D. (2021). Investigation of blowing and suction for turbulent flow control on airfoils.
59(11), 4422-4436.
https://doi.org/10.2514/1.J060211
Jordaan, H., Stephan Heyns, P., & Hoseinzadeh, S. (2021). Numerical development of a coupled one-dimensional/three-dimensional computational fluid dynamics method for thermal analysis with flow maldistribution.
Journal of Thermal Science and Engineering Applications,
13(4).
https://doi.org/10.1115/1.4049040
Kim, J., Rusak, Z., & Koratkar, N. (2003). Small-Scale Airfoil aerodynamic efficiency improvement by surface temperature and heat transfer.
Aerospace Research Central, 41(11), 2105-2113.
https://doi.org/10.2514/2.6829
Landrum, D., & Macha, J. (1987).
Influence of a heated leading edge on boundary layer growth, stability, and transition. 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference.
https://doi.org/10.2514/6.1987-1259
Li, X. K., Liu, W., Zhang, T. J., Wang, P. M., & Wang, X. D. (2019). Analysis of the effect of vortex generator spacing on boundary layer flow separation control.
Applied Sciences, 9(24), 5495.
https://www.mdpi.com/2076-3417/9/24/5495
Liu, Y., Zhu, Y., Li, D., Huang, Z., & Bi, C. (2023). Computational simulation of mass transfer in membranes using hybrid machine learning models and computational fluid dynamics.
Case Studies in Thermal Engineering,
47, 103086.
https://doi.org/https://doi.org/10.1016/j.csite.2023.103086
Norton, D. J., Macha, J. M., & Young, J. C. (1973). Surface
Temperature Effect on Subsonic Stall.
Aerospace Research Central, 10(9), 581-587.
https://doi.org/10.2514/3.61929
O'Meara, M. M., & Mueller, T. J. (1987). Laminar separation bubble characteristics on an airfoil at low Reynolds numbers.
Aerospace Research Central, 25(8), 1033-1041.
https://doi.org/10.2514/3.9739
Oosedo, A., Abiko, S., Konno, A., & Uchiyama, M. (2017). Optimal transition from hovering to level-flight of a quadrotor tail-sitter UAV.
Autonomous Robots,
41(5), 1143-1159.
https://doi.org/10.1007/s10514-016-9599-4
Raghunathan, S., & Mitchell, D. (1995). Computed effects of heat transfer on the transonic flow over an aerofoil.
Aerospace Research Central, 33(11), 2120-2127.
https://doi.org/10.2514/3.12956
Samiee, A., Djavareshkian, M. H., Feshalami, B. F., & Esmaeilifar, E. (2018). Improvement of airfoils aerodynamic efficiency by thermal camber phenomenon at low reynolds number.
Journal of Aerospace Technology and Management,
10.
https://doi.org/10.5028/jatm.v10.954
Seyhan, M., Sarioglu, M., & Akansu, Y. E. (2021). Influence of leading-edge tubercle with amplitude modulation on NACA 0015 airfoil.
Aerospace Research Central, 59(10), 3965-3978.
https://doi.org/10.2514/1.J060180
Silva, D. d., & Malatesta, V. (2020). Numerical simulation of the boundary layer control on the NACA 0015 airfoil through vortex generators.
Journal of Aerospace Technology and Management,
12.
https://doi.org/10.5028/jatm.v12.1102
Sutherland, W. (1893). LII. The viscosity of gases and molecular force.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
36(223), 507-531.
https://doi.org/10.1080/14786449308620508
Yan, Y., Avital, E., Williams, J., & Cui, J. (2019). CFD analysis for the performance of micro-vortex generator on aerofoil and vertical axis turbine.
Journal of Renewable and Sustainable Energy,
11(4).
https://doi.org/10.1063/1.5110422
Zadorozhna, D. B., Benavides, O., Grajeda, J. S., Ramirez, S. F., & de la Cruz May, L. (2021). A parametric study of the effect of leading edge spherical tubercle amplitudes on the aerodynamic performance of a 2D wind turbine airfoil at low Reynolds numbers using computational fluid dynamics.
Energy Reports,
7, 4184-4196.
https://doi.org/https://doi.org/10.1016/j.egyr.2021.06.093