Ali, N., Cortina, G., Hamilton, N., Calaf, M., & Cal, R. B. (2017). Turbulence characteristics of a thermally stratified wind turbine array boundary layer via proper orthogonal decomposition.
Journal of Fluid Mechanics,
828, 175–195.
https://doi.org/10.1017/jfm.2017.492
Ali, N., Hamilton, N., DeLucia, D., & Bayoán Cal, R. (2018). Assessing spacing impact on coherent features in a wind turbine array boundary layer.
Wind Energy Science,
3(1), 43–56.
https://doi.org/10.5194/wes-3-43-2018
Davidson, P. A. (2015). Turbulence: an introduction for scientists and engineers. Oxford University Press.
Doulgerakis, Z. (2010). Large scale vortex and strain dynamics in mixing vessels and implications for macro-mixing enhancement. [Doctoral dissertation, University of London].
Goyal, R. (2017). Flow field investigations on a Francis turbine model during steady and transient operations. [Ph. D. thesis, Indian Institute of Technology], Roorkee.
Goyal, R., Cervantes, M. J., & Gandhi, B. K. (2017a). Vortex rope formation in a high head model Francis turbine.
Journal of Fluids Engineering,
139(4).
https://doi.org/10.1115/1.4035224
Goyal, R., Cervantes, M. J., & Gandhi, B. K. (2017b). Characteristics of synchronous and asynchronous modes of fluctuations in Francis turbine draft tube during load variation.
International Journal of Fluid Machinery and Systems,
10(2), 164–175.
https://doi.org/10.5293/IJFMS.2017.10.2.164
Goyal, R., Cervantes, M. J., Masoodi, F., & Sahu, P. (2023). A study of the velocity field during mitigation of vortex breakdown in model francis turbine at high load.
Journal of Fluids Engineering, 1–42.
https://doi.org/10.1115/1.4056614
Goyal, R., Gandhi, B. K., & Cervantes, M. J. (2017c). Experimental study of mitigation of a spiral vortex breakdown at high Reynolds number under an adverse pressure gradient.
Physics of Fluids,
29(10), 104104.
https://doi.org/10.1063/1.4999123
Goyal, R., Gandhi, B. K., & Cervantes, M. J. (2018). PIV measurements in Francis turbine – A review and application to transient operations.
Renewable and Sustainable Energy Reviews,
81, 2976–2991.
https://doi.org/10.1016/j.rser.2017.06.108
Hamilton, N., Tutkun, M., & Cal, R. B. (2017). Anisotropic character of low-order turbulent flow descriptions through the proper orthogonal decomposition.
Physical Review Fluids,
2(1), 014601.
https://doi.org/10.1103/PhysRevFluids.2.014601
Khozaei, M. H., Favrel, A., & Miyagawa, K. (2022). On the generation mechanisms of low-frequency synchronous pressure pulsations in a simplified draft-tube cone.
International Journal of Heat and Fluid Flow,
93, 108912.
https://doi.org/10.1016/j.ijheatfluidflow.2021.108912
Kostas, J., Soria, J., & Chong, M. S. (2005). A comparison between snapshot POD analysis of PIV velocity and vorticity data.
Experiments in Fluids,
38(2), 146–160.
https://doi.org/10.1007/s00348-004-0873-4
Kumar, S., Cervantes, M. J., & Gandhi, B. K. (2021a). Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective.
Renewable and Sustainable Energy Reviews,
136, 110354.
https://doi.org/10.1016/j.rser.2020.110354
Kumar, S., Khullar, S., Cervantes, M. J., & Gandhi, B. K. (2021b).
Proper orthogonal decomposition of turbulent swirling flow of a draft tube at part load. IOP Conference Series: Earth and Environmental Science.
https://doi.org/10.1088/1755-1315/774/1/012091
Kumar, S., Khullar, S., Goyal, R., Cervantes, M. J., & Gandhi, B. K. (2019).
POD analysis of turbulent swirling flow in draft tube of a high-head Francis turbine model at part load operation. Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019).
https://doi.org/10.1615/IHMTC-2019.1580
Liné, A., Gabelle, J. C., Morchain, J., Anne-Archard, D., & Augier, F. (2013). On POD analysis of PIV measurements applied to mixing in a stirred vessel with a shear thinning fluid.
Chemical Engineering Research and Design,
91(11), 2073–2083.
https://doi.org/10.1016/j.cherd.2013.05.002
Litvinov, I., Sharaborin, D., Gorelikov, E., Dulin, V., Shtork, S., Alekseenko, S., & Oberleithner, K. (2022). Modal Decomposition of the Precessing Vortex Core in a Hydro Turbine Model.
Applied Sciences,
12(10), 5127.
https://doi.org/10.3390/app12105127
Lumley, J. L. (1967). The structure of inhomogeneous turbulence. in atmospheric turbulence and wave propagation.
Podvin, B., & Fraigneau, Y. (2017). A few thoughts on proper orthogonal decomposition in turbulence.
Physics of Fluids,
29(2), 020709.
https://doi.org/10.1063/1.4974330
Rudolf, P., & Jízdný, M. (2011). Decomposition of the swirling flow fields. Proceedings of the 4th IAHR International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, 131–141.
Rudolf, P., & Štefan, D. (2014). Reduced order model of draft tube flow. IOP Conference Series: Earth and Environmental Science,. https://doi.org/10.1088/1755-1315/22/2/022022
Rudolf, P., Urban, O., & Štefan, D. (2019).
Construction of a reduced-order dynamic model for prospective swirling flow control in hydraulic turbine draft tube. IOP Conference Series: Earth and Environmental Science, 240, 022065.
https://doi.org/10.1088/1755-1315/240/2/022065
Rudolf, P., Uruba, V., Štefan, D., & Hladík, O. (2013). Analysis of the coherent vortical structures in a diffuser. 5th International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Lausanne, Switzerland, 37.
Saarenrinne, P., & Piirto, M. (2000). Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields.
Experiments in Fluids,
29(7), S300–S307.
https://doi.org/10.1007/s003480070032
Salehi, S., & Nilsson, H. (2022). Flow-induced pulsations in Francis turbines during startup - A consequence of an intermittent energy system.
Renewable Energy,
188, 1166–1183.
https://doi.org/10.1016/j.renene.2022.01.111
Shahzer, M. A., Kim, S.-J., Cho, Y., & Kim, J.-H. (2022). Suppression of vortex rope formation and pressure fluctuation using anti-swirl fins in a Francis turbine model at part load condition with cavitation inception point.
Physics of Fluids,
34(9), 097106.
https://doi.org/10.1063/5.0097685
Sirovich, L. (1987a). Turbulence and the dynamics of coherent structures. I. Coherent structures.
Quarterly of Applied Mathematics,
45(3), 561–571.
https://doi.org/10.1090/qam/910462
Sirovich, L. (1987b). Turbulence and the dynamics of coherent structures. II. Symmetries and transformations.
Quarterly of Applied Mathematics,
45(3), 573–582.
https://doi.org/10.1090/qam/910463
Sirovich, L. (1987c). Turbulence and the dynamics of coherent structures. III. Dynamics and scaling.
Quarterly of Applied Mathematics,
45(3), 583–590.
https://doi.org/10.1090/qam/910464
Stefan, D., & Rudolf, P. (2015).
Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model. Journal of Physics: Conference Series, 579, 012002.
https://doi.org/10.1088/1742-6596/579/1/012002
Štefan, D., Rudolf, P., Muntean, S., & Susan-Resiga, R. (2017). Proper orthogonal decomposition of self-induced instabilities in decelerated swirling flows and their mitigation through axial water injection.
Journal of Fluids Engineering,
139(8).
https://doi.org/10.1115/1.4036244
Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence. MIT Press.
Tutkun, M., & George, W. K. (2017). Lumley decomposition of turbulent boundary layer at high Reynolds numbers.
Physics of Fluids,
29(2), 020707.
https://doi.org/10.1063/1.4974746
Wang, L., Cui, J., Shu, L., Jiang, D., Xiang, C., Li, L., & Zhou, P. (2022). Research on the vortex rope control techniques in draft tube of francis turbines.
Energies,
15(24), 9280.
https://doi.org/10.3390/en15249280