Adiga, K. C., Willauer, H. D., Ananth, R., & Williams, F. W. (2009). Implications of droplet breakup and formation of ultra fine mist in blast mitigation.
Fire Safety Journal,
44(3), 363-369.
https://doi.org/10.1016/j.firesaf.2008.08.003
Bailey, J. L., Farley, J. P., Williams, F. W., Lindsay, M. S., & Schwer, D. A. (2006). Blast Mitigation Using Water Mist.
NRL Report, 6180-06.
https://doi.org/10.1016/j.ijimpeng.2014.08.014
Blanc, L., Herrera, S. S., & Hanus, J. L. (2018). Simulating the blast wave from detonation of a charge using a balloon of compressed air.
Shock Waves,
28(4), 641-652.
https://doi.org/10.1007/s00193-017-0774-0
Bornstein, H., Ryan, S., & Mouritz, A. P. (2019). Evaluation of blast protection using novel-shaped water-filled containers: Experiments and simulations.
International Journal of Impact Engineering,
127, 41-61.
https://doi.org/10.1016/j.ijimpeng.2019.01.006
Chauvin, A., Daniel, E., Chinnayya, A., Massoni, J., & Jourdan, G. (2016). Shock waves in sprays: numerical study of secondary atomization and experimental comparison.
Shock Waves,
26(4), 403-415.
https://doi.org/10.1007/s00193-015-0593-0
Chauvin, A., Jourdan, G., Daniel, E., Houas, L., & Tosello, R. (2011). Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium.
Physics of Fluids,
23(11), 13, Article 113301.
https://doi.org/10.1063/1.3657083
Chen, L., Zhang, L., Fang, Q., & Mao, Y. M. (2015). Performance based investigation on the construction of anti-blast water wall.
International Journal of Impact Engineering,
81, 17-33.
https://doi.org/10.1016/j.ijimpeng.2015.03.003
Hai-bin, X., Long-kui, C., De-zhi, Z., Fang-ping, Z., Zhao-wu, S., Wen-xiang, L., & Sheng-hong, H. (2021). Mitigation effects on the reflected overpressure of blast shock with water surrounding an explosive in a confined space.
Defence Technology,
17(03), 1071-1080.
https://doi.org/https://doi.org/10.1016/j.dt.2020.06.026
Huang, Z. W., & Zhang, H. W. (2020). On the interactions between a propagating shock wave and evaporating water droplets.
Physics of Fluids,
32(12), 14, Article 123315.
https://doi.org/10.1063/5.0035968
Jenft, A., Collin, A., Boulet, P., Pianet, G., Breton, A., & Muller, A. (2014). Experimental and numerical study of pool fire suppression using water mist.
Fire Safety Journal,
67, 1-12.
https://doi.org/10.1016/j.firesaf.2014.05.003
Jiba, Z., Sono, T. J., & Mostert, F. J. (2018). Implications of fine water mist environment on the post-detonation processes of a PE4 explosive charge in a semi-confined blast chamber.
Defence Technology,
14(5), 366-372.
https://doi.org/10.1016/j.dt.2018.05.005
Jourdan, G., Biamino, L., Mariani, C., Blanchot, C., Daniel, E., Massoni, J., Houas, L., Tosello, R., & Praguine, D. (2010). Attenuation of a shock wave passing through a cloud of water droplets.
Shock Waves,
20(4), 285-296.
https://doi.org/10.1007/s00193-010-0251-5
Kong, X. S., Zhou, H., Zheng, C., Liu, H. B., Wu, W. G., Guan, Z. W., & Dear, J. P. (2019). An experimental study on the mitigation effects of fine water mist on confined-blast loading and dynamic response of steel plates.
International Journal of Impact Engineering,
134.
https://doi.org/https://doi.org/10.1016/j.ijimpeng.2019.103370
Liu, A. B., Mather, D., & Reitz, R. D. (1993). Modeling the Effects of Drop Drag and Breakup on Fuel Sprays.
Sae Paper,
93,
https://doi.org/10.4271/930072.
Liverts, M., Ram, O., Sadot, O., Apazidis, N., & Ben-Dor, G. (2015). Mitigation of exploding-wire-generated blast-waves by aqueous foam.
Physics of Fluids,
27(7), 076103.
https://doi.org/10.1063/1.4924600
Miller, R. S., Harstad, K., & Bellan, J. (1998). Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations.
International Journal of Multiphase Flow,
24(6), 1025-1055.
https://doi.org/10.1016/s0301-9322(98)00028-7
Mohotti, D., Wijesooriya, K., & Weckert, S. (2023). A simplified approach to modelling blasts in computational fluid dynamics (CFD).
Defence Technology,
23, 19-34.
https://doi.org/10.1016/j.dt.2022.11.006
Pontalier, Q., Lhoumeau, M., Milne, A. M., Longbottom, A. W., & Frost, D. L. (2018). Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials.
Shock Waves,
28(3), 513-531.
https://doi.org/10.1007/s00193-018-0820-6
Pontalier Q., Loiseau, J. , Goroshin, S. , & Frost, D. L. (2018). Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids.
Shock Waves,
28(3),
https://doi.org/10.1007/s00193-018-0821-5
Rigby, S. E., Lodge, T. J., Alotaibi, S., Barr, A. D., Clarke, S. D., Langdon, G. S., & Tyas, A. (2020). Preliminary yield estimation of the 2020 Beirut explosion using video footage from social media.
Shock Waves,
30(6), 671-675.
https://doi.org/10.1007/s00193-020-00970-z
Schunck, T., Bastide, M., Eckenfels, D., & Legendre, J. F. (2020). Blast mitigation by water mist: the effect of the detonation configuration.
Shock Waves,
30(6), 629-644.
https://doi.org/10.1007/s00193-020-00960-1
Sharma, S., Pratap Singh, A., Srinivas Rao, S., Kumar, A., & Basu, S. (2021). Shock induced aerobreakup of a droplet.
Journal of Fluid Mechanics,
929,
https://doi.org/10.1017/jfm.2021.860.
Shibue, K., Sugiyama, Y., & Matsuo, A. (2022). Numerical study of the effect on blast-wave mitigation of the quasi-steady drag force from a layer of water droplets sprayed into a confined geometry.
Process Safety and Environmental Protection,
160, 491-501.
https://doi.org/10.1016/j.psep.2022.02.038
Sugiyama, Y., Ando, H., Shimura, K., & Matsuo, A. (2019). Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD-DEM model.
Shock Waves,
29(4), 499-510.
https://doi.org/10.1007/s00193-018-0878-1
Sugiyama, Y., Shibue, K., & Matsuo, A. (2023). The blast mitigation mechanism of a single water droplet layer and improvement of the blast mitigation effect using multilayers in a confined geometry.
International Journal of Multiphase Flow,
159, 11, Article 104322.
https://doi.org/ARTN 10432210.1016/j.ijmultiphaseflow.2022.104322
Sugiyama, Y., Tamba, T., & Ohtani, K. (2022). Numerical study on a blast mitigation mechanism by a water droplet layer: Validation with experimental results, and the effect of the layer radius.
Physics of Fluids,
34(7), 19, Article 076104.
https://doi.org/10.1063/5.0091959
Tamba, T., Sugiyama, Y., Ohtani, K., & Wakabayashi, K. (2021). Comparison of blast mitigation performance between water layers and water droplets.
Shock Waves,
31(1), 89-94.
https://doi.org/10.1007/s00193-021-00990-3
Theofanous, T. G., & Chang, C. H. (2017). The dynamics of dense particle clouds subjected to shock waves. Part 2. Modeling/numerical issues and the way forward.
International Journal of Multiphase Flow,
89, 177-206.
https://doi.org/10.1016/j.ijmultiphaseflow.2016.10.004
Valsamos, G., Larcher, M., & Casadei, F. (2021). Beirut explosion 2020: A case study for a large-scale urban blast simulation.
Safety Science,
137, 11, Article 105190.
https://doi.org/10.1016/j.ssci.2021.105190
Willauer, H. D., Ananth, R., Farley, J. P., & Williams, F. W. (2009a). Mitigation of TNT and Destex explosion effects using water mist.
Journal of hazardous materials,
165(1), 1068-1073.
https://doi.org/10.1016/j.jhazmat.2008.10.130
Willauer, H. D., Ananth, R., Farley, J.P., Williams, F.W., Back, G.G., Kennedy, M., O'connor, J., & Gameiro, V.M. (2009). Blast Mitigation Using Water Mist: Test Series II.
https://www.researchgate.net/publication/235207991_Blast_Mitigation_Using_Water_Mist_Test_Series_II
Zhao, J., Li, Q., Zhang, L., Liu, S., & Jiang, L. (2023). Experimental study on mitigation effects of water mist on blast wave.
Explosion and Shock Waves, 1-13.
https://doi.org/10.11883/bzycj-2023-0108