Numerical Study on Blast Mitigation by a Water Mist: Impact of the Mean Droplet Diameter and Volume Fraction

Document Type : Regular Article

Authors

School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The ability of water mist to mitigate blast loads has been widely recognized. However, the effects of the mean droplet diameter and volume fraction of water mist on the blast mitigation effect and underlying mechanisms have not been comprehensively examined. In this study, a three-dimensional numerical simulation based on the Euler-Lagrangian approach was carried out to study the dissipation process of blast wave energy and momentum by water mist, as well as the impact of varying mean droplet diameters (255-855 μm) and volume fractions (2.4×10-3-5.4×10-3) on blast mitigation. The numerical model incorporates interphase mass, momentum, and energy exchanges, as well as droplet breakup and size distribution. The results showed that the most efficient transfer of momentum and energy between the blast wave and water mist occurred at the air/water mist interface. Subsequently, the efficiency of momentum and energy transfer decreased as the blast wave propagated within the water mist due to the blast wave mitigation. The reduction in the mean droplet diameter and the increase in the volume fraction result in an increase in both the total the surface area and number of water droplets, thereby enhancing the efficiency of energy and momentum absorption by droplets and improving their ability to mitigate blasts.

Keywords

Main Subjects


Adiga, K. C., Willauer, H. D., Ananth, R., & Williams, F. W. (2009). Implications of droplet breakup and formation of ultra fine mist in blast mitigation. Fire Safety Journal, 44(3), 363-369. https://doi.org/10.1016/j.firesaf.2008.08.003
Ananth, R., Willauer, H. D., Farley, J. P., & Williams, F. W. (2012). Effects of Fine Water Mist on a Confined Blast. Fire Technology, 48(3), 641-675. https://doi.org/10.1007/s10694-010-0156-y
Bailey, J. L., Farley, J. P., Williams, F. W., Lindsay, M. S., & Schwer, D. A. (2006). Blast Mitigation Using Water Mist. NRL Report, 6180-06. https://doi.org/10.1016/j.ijimpeng.2014.08.014
Blanc, L., Herrera, S. S., & Hanus, J. L. (2018). Simulating the blast wave from detonation of a charge using a balloon of compressed air. Shock Waves, 28(4), 641-652. https://doi.org/10.1007/s00193-017-0774-0
Bornstein, H., Phillips, P., & Anderson, C. (2015). Evaluation of the blast mitigating effects of fluid containers. International Journal of Impact Engineering, 75, 222-228. https://doi.org/10.1016/j.ijimpeng.2014.08.014
Bornstein, H., Ryan, S., & Mouritz, A. P. (2019). Evaluation of blast protection using novel-shaped water-filled containers: Experiments and simulations. International Journal of Impact Engineering, 127, 41-61. https://doi.org/10.1016/j.ijimpeng.2019.01.006
Chauvin, A., Daniel, E., Chinnayya, A., Massoni, J., & Jourdan, G. (2016). Shock waves in sprays: numerical study of secondary atomization and experimental comparison. Shock Waves, 26(4), 403-415. https://doi.org/10.1007/s00193-015-0593-0
Chauvin, A., Jourdan, G., Daniel, E., Houas, L., & Tosello, R. (2011). Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium. Physics of Fluids, 23(11), 13, Article 113301. https://doi.org/10.1063/1.3657083
Chen, L., Zhang, L., Fang, Q., & Mao, Y. M. (2015). Performance based investigation on the construction of anti-blast water wall. International Journal of Impact Engineering, 81, 17-33. https://doi.org/10.1016/j.ijimpeng.2015.03.003
Cheng, M., Hung, K. C., & Chong, O. Y. (2005). Numerical study of water mitigation effects on blast wave. Shock Waves, 14(3), 217-223. https://doi.org/10.1007/s00193-005-0267-4
Ferguson, R. E., Kuhl, A. L., & Oppenheim, A. K. (1999). Combustion of TNT products in a confined explosion. United States. https://www.osti.gov/servlets/purl/9375.
Guildenbecher, D. R., López-Rivera, C., & Sojka, P. E. (2009). Secondary atomization. Experiments in Fluids, 46(3), 371. https://doi.org/10.1007/s00348-008-0593-2
Hai-bin, X., Long-kui, C., De-zhi, Z., Fang-ping, Z., Zhao-wu, S., Wen-xiang, L., & Sheng-hong, H. (2021). Mitigation effects on the reflected overpressure of blast shock with water surrounding an explosive in a confined space. Defence Technology, 17(03), 1071-1080. https://doi.org/https://doi.org/10.1016/j.dt.2020.06.026
Huang, Z. W., & Zhang, H. W. (2020). On the interactions between a propagating shock wave and evaporating water droplets. Physics of Fluids, 32(12), 14, Article 123315. https://doi.org/10.1063/5.0035968
Jenft, A., Collin, A., Boulet, P., Pianet, G., Breton, A., & Muller, A. (2014). Experimental and numerical study of pool fire suppression using water mist. Fire Safety Journal, 67, 1-12. https://doi.org/10.1016/j.firesaf.2014.05.003
Jeon, H., & Eliasson, V. (2017). Shock wave interactions with liquid sheets. Experiments in Fluids, 58(4). https://doi.org/10.1007/s00348-017-2300-7
Jiba, Z., Sono, T. J., & Mostert, F. J. (2018). Implications of fine water mist environment on the post-detonation processes of a PE4 explosive charge in a semi-confined blast chamber. Defence Technology, 14(5), 366-372. https://doi.org/10.1016/j.dt.2018.05.005
Jourdan, G., Biamino, L., Mariani, C., Blanchot, C., Daniel, E., Massoni, J., Houas, L., Tosello, R., & Praguine, D. (2010). Attenuation of a shock wave passing through a cloud of water droplets. Shock Waves, 20(4), 285-296. https://doi.org/10.1007/s00193-010-0251-5
Kong, X. S., Zhou, H., Zheng, C., Liu, H. B., Wu, W. G., Guan, Z. W., & Dear, J. P. (2019). An experimental study on the mitigation effects of fine water mist on confined-blast loading and dynamic response of steel plates. International Journal of Impact Engineering, 134. https://doi.org/https://doi.org/10.1016/j.ijimpeng.2019.103370        
Liu, A. B., Mather, D., & Reitz, R. D. (1993). Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. Sae Paper, 93, https://doi.org/10.4271/930072.
Liverts, M., Ram, O., Sadot, O., Apazidis, N., & Ben-Dor, G. (2015). Mitigation of exploding-wire-generated blast-waves by aqueous foam. Physics of Fluids, 27(7), 076103. https://doi.org/10.1063/1.4924600
Meekunnasombat, P., Oakley, J. G., Anderson, M. H., & Bonazza, R. (2006). Experimental study of shock-accelerated liquid layers. Shock Waves, 15(6), 383-397. https://doi.org/10.1007/s00193-006-0039-9
Miller, R. S., Harstad, K., & Bellan, J. (1998). Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. International Journal of Multiphase Flow, 24(6), 1025-1055. https://doi.org/10.1016/s0301-9322(98)00028-7
Mohotti, D., Wijesooriya, K., & Weckert, S. (2023). A simplified approach to modelling blasts in computational fluid dynamics (CFD). Defence Technology, 23, 19-34. https://doi.org/10.1016/j.dt.2022.11.006
Pontalier, Q., Lhoumeau, M., Milne, A. M., Longbottom, A. W., & Frost, D. L. (2018). Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials. Shock Waves, 28(3), 513-531. https://doi.org/10.1007/s00193-018-0820-6
Pontalier Q., Loiseau, J. , Goroshin, S. , & Frost, D. L. (2018). Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids. Shock Waves, 28(3), https://doi.org/10.1007/s00193-018-0821-5
Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops, part I. Chemical Engineering Progress, 48(3), 141-146. https://www.researchgate.net/publication/304113941_Evaporation_from_drops_part_I
Reitz, R. D. (1988). Mechanisms of atomization processes in high-pressure vaporizing sprays. Atomization and Spray Technology, 3, https://www.researchgate.net/publication/234279474_Modeling_atomization_processes_in_high-pressure_vaporizing_sprays
Rigby, S. E., Lodge, T. J., Alotaibi, S., Barr, A. D., Clarke, S. D., Langdon, G. S., & Tyas, A. (2020). Preliminary yield estimation of the 2020 Beirut explosion using video footage from social media. Shock Waves, 30(6), 671-675. https://doi.org/10.1007/s00193-020-00970-z
Sazhin, S. S. (2006). Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32(2), 162-214. https://doi.org/10.1016/j.pecs.2005.11.001
Schunck, T., Bastide, M., Eckenfels, D., & Legendre, J. F. (2020). Blast mitigation by water mist: the effect of the detonation configuration. Shock Waves, 30(6), 629-644. https://doi.org/10.1007/s00193-020-00960-1
Sharma, S., Pratap Singh, A., Srinivas Rao, S., Kumar, A., & Basu, S. (2021). Shock induced aerobreakup of a droplet. Journal of Fluid Mechanics, 929, https://doi.org/10.1017/jfm.2021.860.
Shibue, K., Sugiyama, Y., & Matsuo, A. (2022). Numerical study of the effect on blast-wave mitigation of the quasi-steady drag force from a layer of water droplets sprayed into a confined geometry. Process Safety and Environmental Protection, 160, 491-501. https://doi.org/10.1016/j.psep.2022.02.038            
Sugiyama, Y., Ando, H., Shimura, K., & Matsuo, A. (2019). Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD-DEM model. Shock Waves, 29(4), 499-510. https://doi.org/10.1007/s00193-018-0878-1
Sugiyama, Y., Shibue, K., & Matsuo, A. (2023). The blast mitigation mechanism of a single water droplet layer and improvement of the blast mitigation effect using multilayers in a confined geometry. International Journal of Multiphase Flow, 159, 11, Article 104322. https://doi.org/ARTN 10432210.1016/j.ijmultiphaseflow.2022.104322
Sugiyama, Y., Tamba, T., & Ohtani, K. (2022). Numerical study on a blast mitigation mechanism by a water droplet layer: Validation with experimental results, and the effect of the layer radius. Physics of Fluids, 34(7), 19, Article 076104. https://doi.org/10.1063/5.0091959
Tamba, T., Sugiyama, Y., Ohtani, K., & Wakabayashi, K. (2021). Comparison of blast mitigation performance between water layers and water droplets. Shock Waves, 31(1), 89-94. https://doi.org/10.1007/s00193-021-00990-3
Theofanous, T. G., & Chang, C. H. (2017). The dynamics of dense particle clouds subjected to shock waves. Part 2. Modeling/numerical issues and the way forward. International Journal of Multiphase Flow, 89, 177-206. https://doi.org/10.1016/j.ijmultiphaseflow.2016.10.004
Valsamos, G., Larcher, M., & Casadei, F. (2021). Beirut explosion 2020: A case study for a large-scale urban blast simulation. Safety Science, 137, 11, Article 105190. https://doi.org/10.1016/j.ssci.2021.105190
Willauer, H. D., Ananth, R., Farley, J. P., & Williams, F. W. (2009a). Mitigation of TNT and Destex explosion effects using water mist. Journal of hazardous materials, 165(1), 1068-1073. https://doi.org/10.1016/j.jhazmat.2008.10.130
Willauer, H. D., Ananth, R., Farley, J.P., Williams, F.W., Back, G.G., Kennedy, M., O'connor, J., & Gameiro, V.M. (2009). Blast Mitigation Using Water Mist: Test Series II. https://www.researchgate.net/publication/235207991_Blast_Mitigation_Using_Water_Mist_Test_Series_II
Yeom, G. S., & Chang, K. S. (2012). Dissipation of shock wave in a gas-droplet mixture by droplet fragmentation. International Journal of Heat and Mass Transfer, 55(4), 941-957. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.015
Zhao, J., Li, Q., Zhang, L., Liu, S., & Jiang, L. (2023). Experimental study on mitigation effects of water mist on blast wave. Explosion and Shock Waves, 1-13. https://doi.org/10.11883/bzycj-2023-0108