Bai, R., Wang, H., Tang, R., Liu, S., and Xu, W. (2021), Roller characteristics of pre-aerated high-Froude-number hydraulic jumps.
Journal of Hydraulic Engineering, 147(4), 04021008.
https://doi.org/10.1061/(ASCE)HY.1943-7900.00018
Bakhmeteff, B. A., & Matzke, A. E. (1936). The hydraulic jump in terms of dynamics similarity. Transaction of ASCE, 100, 630 - 680.
Belanger, J. B. (1849). Notes sur le Cours d’Hydraulique (Lectures Notes on Hydraulic Engineering). Me´m. Ecole Nat. Ponts et Chausse´es, Paris, France, session 1849–1850.
Bidone, G. (1819). Observation on height of hydraulic jump: A report presented in December 12. Meeting of the Royal Academy of Science, Turin.
Bremen, R. (1990). Expanding stilling basin. Communication (Laboratoire de constructions hydrauliques, Ecole polytechnique fédérale de Lausanne), 3. Lausanne, EPFL-LCH, ISSN: 1661-1179.
Bretz, N.V. (1987). Ressaut Hydraulique Force par Seuil. Thesis No. 699, presented to the Swiss Federal Insitute of Technology, Lausanne (EPFL). Appeared also as Communication No. 2, laboratorie de Construction Hydrauliques, EPFL, ed. R. Sinniger, Lausanne, Switzerland.
Chow, V. T. (1959). Open Channel Hydraulic. McGraw-Hill Book Company, Inc., New York.
Daneshfaraz, R., Aminvash, E., Di Francesco, S., Najibi, A., &Abraham, J. (2021a). Three-dimensional study of the effect of block roughness geometry on inclined drop.
Journal of Numerical Methods in Civil Engineering 6, 1–9.
https://doi.org/10.52547/NMCE.6.1.1
Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., & Abraham, J. (2021b). Three-dimensional investigation of hydraulic properties of vertical drop in the presence of step and grid dissipators. Symmetry,
13, 895.
https://doi.org/10.3390/sym13050895
Daneshfaraz, R., Hasannia, V., Norouzi, R., Sihag, P., Sadeghfam, S., & Abraham, J. (2021c). Investigating the effect of horizontal screen on hydraulic parameters of vertical drop.
Overview. The Iranian Journal of Science and Technology, 45, 1909–1917.
https://doi.org/10.1007/s40996-020-00572-w
Daneshfaraz, R., Majedi Asl, M., & Mirzaee, R. (2019a). Experimental study of expanding effect and sand roughened bed on hydraulic jump characteristics.
Iranian Journal of Soil and Water Research,
50(4), 885-896. (In Persian).
https://doi.org/10.22059/IJSWR.2018.261923.667968
Daneshfaraz, R., Mirzaee, R., Ghaderi, A., & MajediAsl, M. (2019b). The S-jump’s characteristics in the rough sudden expanding stilling basin.
AUT Journal of Civil Engineering,
4(3), 349-354. (In Persian).
https://doi.org/10.22060/AJCE.2019.16427.5586.
Jamil, M., & Khan S. A. (2008). Theoretical Study of Hydraulic Jump in Trapezoidal Channel Section. Journal of Institution of Engineer (India), 89, 28–32.
Khosravinia, P., Sanikhani, H., & Abdi, C. (2018). Application of soft computing techniques to Predict of hydraulic jump length on rough beds.
Journal of Rehabilitation in Civil Engineering, 6(2), 147-162.
https://doi.org/10.22075/JRCE.2017.11047.1180
Negm, A. M. (2000). Empirical prediction of properties of R-jump and submerged S-jump in abruptly expanding stilling basins. Egyptian Journal for Engineering Sciences and Technology, (EJEST), Zagazig University, Zagazig, Egypt.
Negm, A. M., Ibrahim, A. A., & Salem, M. N. (2000). Modeling of depth ratio of hydraulic jumps in abruptly enlarged stilling basins. Civil Engineering Research Magzine (CERM), Faculty of Engineering, Ain Shams University, Cairo, Egypt.
Ohtsu, I., Yasuda Y., & Gotoh H. (1995). Characteristics of undular hydraulic jumps in rectangular channels, Proceeding of 26th IAHR Congress, 1C14, London, UK.
Peterka, A. J. (1958). Hydraulic Design of Stilling Basins and Energy Dissipaters. US Department Interior, Bureau of Reclamation, Engineering Monograph 25, Denver, Colorado.
Rajaratnam, N. (1964). Discussion to silvester. Journal of Hydraulic Division, 90(HY4), 341-350.
Ranga Raju, K. G. (1993). Flow Through Open Channels. McGraw Hill, New Delhi, 1993, 2nd Edn. ISBN: 007096565X, 9780070965652
Ranga Raju, K. G., Mittal, M. K., Verma, M. S., & Ganeshan, V. R. (1980). Analysis of flow over baffle blocks and end sills.
Journal of Hydraulics Research,
18(3), 227-241.
https://doi.org/10.1080/00221688009499549.
Sadeghfam, S., Khatibi, R., Hassanzadeh, Y., Daneshfaraz, R., & Ghorbani, M. A. (2017). Forced hydraulic jumps described by classic hydraulic equations reproducing cusp catastrophe features.
Arabian Journal for Science and Engineering,
42, 4169–4179.
https://doi.org/10.1007/s13369-017-2616-x
Tyagi, D. M., Pande, P. K. and Mittal, M. K. (1978). Drag on baffle walls in Hydraulic jump. Journal of the hydraulic Division,
Proceeding of ASCE, 104 (4), 515 – 525.
https://doi.org/10.1061/JYCEAJ.0004976
Torkamanzad, N., Hosseinzadeh Dalir, A., Salmasi, F., & Abbaspour, A. (2019). Hydraulic jump below abrupt asymmetric expanding stilling basin on rough bed.
Water,
11(9), 1756.
https://doi.org/10.3390/w11091756
Unny, T. E. (1961). The spatial hydraulic jump. Proc. 9th Convention International Association for Hydraulic Research, IAHR, Belgrad.