Ajibade, A. O., & Ojeagbase, P. O. (2020). Steady natural convection heat and mass transfer flow through a vertical porous channel with variable viscosity and thermal conductivity.
Engineering Reports,
2(11), e12268.
https://doi.org/10.1002/eng2.12268
Amjad, A., Zainb, B., Cullnaz, S., Zaheer, A., Muhammad, U. (2021). Numerical simulation of the thermally developed pulsatile flow of a hybrid nanofluid in a constricted channel,
MDPI. Energies,
14, 2410.
https://doi.org/10.3390/en14092410
https://doi.org/10.2478/s11600-011-0045-x
Jasikova, D., Kotek, M., & Kopecky, V. (2013).
Measurement of fluid motion and temperature changes in the real model of the heat exchanger using pLIF.
EPJ Web of Conferences, EDP Sciences.
https://doi.org/10.1051/epjconf/20134800006
Jha, B. K., & Ajibade, A. O. (2010). Free convection heat and mass flow in a vertical channel with the Dufour effect.
Journal of Process Mechanical Engineering, Sage Journals, 224 (2), 91-101.
https://doi.org/10.1243/09544089JPME318
Joss, J., & Resele, G. (1987). Mathematical modelling of the heat exchange between a river and the atmosphere. Bound-Layer Meteorology, 41(1–4), 27–40. https://doi.org/10.1007/BF00120429
Kalinowska, M. B., Rowiński, P. M., Kubrak, J., & Mirosław-Swiątek, D. (2012). Scenarios of the spread of a waste heat discharge in a river—Vistula River case study.
Acta Geophys, 60, 214–231.
https://doi.org/10.2478/s11600-011-0045-x
Kalinowska, M. B., & Rowiński, P. M. (2015). Thermal pollution in rivers—modelling of the spread of thermal plumes.
Rivers–physical, fluvial and environmental processes, 591-613.
https://doi.org/10.1007/978-3-319-17719-9_24
Kulkarni, K. H., & Hinge, G. A. (2022). Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir.
Water Supply,
22(3), 3283-3296.
https://doi.org/10.2166/ws.2021.403
Leousidis, A. (2022).
Experimental and computational determination of fluid (water) flow velocities in an open channel due to temperature changes [PhD thesis, University of Thessaly]. Department of Civil Engineering.
https://ir.lib.uth.gr/xmlui/handle/11615/81460
Leousidis, A., Keramaris, E., Pechlivanidis, G., & Savvidis, I. (2022).
Experimental study of the effects of heating or cooling on the water surface in an open channel. International conference EWaS5, Water security and safety Management: emerging threats or new challenges, Napoli, Italy.
http://dx.doi.org/10.3390/environsciproc2022021060
Oyewola, O. M., Awonusi, A. A., & Ismail, O. S. (2022). Performance improvement of air-cooled battery thermal management system using sink of different pin-fin shapes.
Emerging Science Journal,
6(4), 851-865.
http://dx.doi.org/10.28991/ESJ-2022-06-04-013
Rau, G. C., Andersen, M. S., McCallum, A. M., & Acworth, R. I. (2010). Analytical methods that use natural heat as a tracer to quantify surface water-groundwater exchange, evaluated using field temperature records.
Hydrogeology Journal,
18(5), 1093-1110.
https://doi.org/10.1007/s10040-010-0586-0
Tarrad, A. H. (2022). 3d numerical modeling to evaluate the thermal performance of single and double u-tube ground-coupled heat pump.
HighTech and Innovation Journal,
3(2), 115-129.
http://dx.doi.org/10.28991/HIJ-2022-03-02-01.